
Static Analysis for Low Level Programs

Deliverable D2-1

ANR project VECOLIB

September 2016

Abstract

Verifying low level code is an essential step for ensuring correctness of libraries imple-
menting containers. The code used in Ada or C implementations of standard libraries of
containers includes complex data structures where the program heap is explicitly managed
using pointers and dynamic allocation.

This deliverable reports on two approaches for static analysis of low level C code
developed in the Vecolib project. The first approach is implemented in Frama-C and
assumes a raw (array like) memory model. The second approach is implemented in an
extension of Celia and combines in an original way the raw memory model with record
memory model in order to analyse dynamic memory allocators.

1 Introduction

The C language features both low-level and high-level accesses to the memory (respectively via
bit manipulations and typed expressions), and exposes the binary representation of high-level
memory structures. Those dual views of the memory give more leeway to the programmers
for implementing efficient programs, letting them choose the most convenient approach to
address different algorithms. However, the interactions (and their restrictions) between the
two models can be subtle and must be well understood. In particular, a commonly held view is
that variable addresses and pointer values are simply integers, and can be handled accordingly.
Even though the standard does not strictly legitimate this idea, a formal verification tool may
choose to embrace it, in order to be able to verify the real-world programs that rely on this
assumption. It is important for realistic analysers to take into account those peculiarities of
the langage, and to handle those constructs soundly – if not precisely.

The static analyser of Frama-C, Value [9] as well as its new version Eva [4] are able
to deal with such view due to a specific memory model, where the contents of locations
in memory are seen as sequences of bytes and pointers are abstracted in both integers and
addresses. During the Vecolib project, the abstract domain used by the static analyzer has
been extended to precisely capture bit-level operations on integers and pointers, as reported
in Section 2.3. Also, a customizable memory abstraction has been added, which is used to
hide from abstract domains the complexities brought by pointers. Instead, they only need to
understand cells, as explained in Section 2.4

The use of dynamic memory allocation (DMA) is mandatory in implementations of con-
tainers. Some libraries use the standard memory allocator (called by malloc/free functions

1

available in stdlib), other implement their own dynamic memory allocator (e.g., formal con-
tainers in Ada). Therefore, it is important to verify that implementations of dynamic memory
allocators are safe, e.g., they do not allocate out of the program data segment, they allocate
disjoint memory regions, they do not leak memory that it is freed or unused by the user. The
code used in DMA implementation makes use intensively of low level operations on pointers
and memory. During the Vecolib project, we developed and implemented a static analysis
technique based on abstract interpretation that is able to analyse the C code of DMA using
the technique of “free list” to keep the set of regions available for allocation. This technique
has been published in [6] and implemented as an extension of Celia. It is shortly described
in Section 3.

Related Work: Precise analyses exist for low level code in C [13] or for binary code [2].
They efficiently track properties about pointer alignment and memory region separations, but
cannot infer shape properties. However, they use different abstract domains than the ones
implemented in Frama-C and lose precision on bitwise operations. The absence of tracking
shape properties avoids the use of the above techniques in the analysis of dynamic memory
allocators.

For DMA analysis, [5] proposes an approach based on Separation Logic extended to pointer
arithmetic. Another hierarchical analysis of shape and numeric properties has been proposed
in [14]. They consider the analysis of linked data structures coded in arrays and track the
shape of these data structures and not the organisation of the set of free chunks. Their
approach is not based on logic and the invariants inferred on the content of list segments are
simpler. In [12] is defined an abstract domain for the analysis of array properties and applies
it to the Minix 1.1 allocator, which is a special class of allocators included in the one we
consider.

2 Analysis with Frama-C

2.1 Memory Locations in Frama-C Eva

The static analysis of programs using pointers implemented in Frama-C is detailed in [9, 4].
Fundamentally, the static analyser Eva features an intricate memory abstraction able to
represent efficiently and precisely both low-level concepts such as unions and bitfields, or
high-level ones, such as arrays. This abstract domain is rich, but cannot infer relational
properties between e.g. different variables.

Frama-C Eva relies on a base separation hypothesis, where distinct variables are mapped
to distinct (and separated) memory blocks. This can be linked to concrete memory addresses
in the following way. For a program P , a valid memory layout in Value is an injective
function θ : X → N from variables in X to integers addresses N such that:

• the integer memory address of a variable is strictly positive (the integer 0 is used for
the representation of the null pointer): ∀x ∈ X, θ(x) > 0

• the contents of different variables do not overlap in memory : ∀x, y ∈ X, θ(y) > θ(x)⇒
θ(y)−θ(x) > sizeof(x) where the mapping sizeof gives the number of bytes occupied
by the type of a variable. The comparison is strict to prevent two variables to be placed
contiguously in memory. This is used later to always disambiguate pointers to &y from
pointers to (&x, sizeof(x)).

2

void *p1 = ..., *p2 = ...;

uintptr_t mask = !c; // c == 0 || c == 1 holds

// Return p1 or p2 without using conditionals useful for

// cryptographic code

r = (void*)(((uintptr_t)p1 & mask) | ((uintptr_t)p2 & ~mask));

// force alignment to 8 bytes

uintptr_t addr = (uintptr_t) p;

addr += 8 - addr % 8;

// another possibility

addr = (addr + (8 - 1)) & -8;

Figure 1: Code fragments with pointer masking

• the content of the variables fits in memory: ∀x ∈ X, θ(x)+sizeof(x) < 2×sizeof(ptr)

For a scalar type τ , an interpretation function is a bijective function ϕτ from any sequence
of bytes of size sizeof(τ) to a value in τ .

A not null pointer value is a pair of a variable x and an integer i such that 0 ≤ i ≤
sizeof(x). It is written (&x, i).

A memory location is a pointer value (&x, i) together with a type τ , denoted by
locτ (&x, i). It represents the consecutive addresses of the sizeof(τ) bytes in memory starting
at the pointer value. The bytes at these addresses form a value of type τ .

2.2 Value Abstraction for Pointer Values

The abstract value for pointer values in Frama-C is a set of tuples (&xi, o
]
i) where xi is

a program variable and o]i is an interval abstracting the set of possible values of the pointer
offset. This is more precise than the usual abstraction &x×o], in which the offsets for different
base addresses are coalesced together.

2.3 Bit-masking on pointers

C programs often use bitwise operators (“&” band, “|” bor, “∧” xor, “∼” bnot) or shift
(“<<” lshift, “>>” rshift) to extract parts of integers or pointers. In terms of precision, those
operations are usually poorly handled by numerical analysis domaine such as intervals or
polyhedra. This loss of precision may lead to false alarms, but often remains acceptable in
practice.

However, more severe problems occur when those operators are applied to pointers that
have been casted into a proper integer type, such as uintptr t. In this case, some analyzers
will stop after reporting an invalid operation, and most others will lose important information
about the possible offsets of the pointers. Yet, this form of coding is widespread on low-level
C programs. We show in Figure 1 some code fragments that involve masking on pointers.

In the abstract interpreter of Frama-C, casting a pointer into an integer acts as the
identity on the abstract value, but all subsequent numeric operations cause the abstract value

3

to degenerate into a special object, called garbled mix. Those garbled mix keep track of the
addresses they may contain, but nothing else.

int x, y, z;

int s = ((uintptr_t)&x + (uintptr_t)&y)-(uintptr_t)&y

// s IN {{ garbled mix of &{x; y} }

*(int *)s = 1; // alarm on possibly invalid pointer +

// imprecise update of x or y -- but not z

Although the loss of precision is not total – the variable z is considered as not modified, the
content of s is abstracted in a very imprecise way.

During the Vecolib projet, although we do not propose a solution for the (extreme)
example above, we have implemented a new component for the analysis of the code fragments
shown in Figure 1. More precisely, we have implemented a new abstract domain that precisely
keeps track of sequence of bits. The abstract value for an expression of type τ is a sequence
of N ≥ 1 consecutive abstract values vi, each of si bits, such that

∑
i=1..N si = 8 ∗ sizeof(τ).

Let us write o(k) =
∑

i=1..k−1 si the offset of the ith value. Given a concretization operator γ

for atomic abstract values, the concretization of γ(vi) is
∑#

i=1..N γ(vi)×# 2o(i): we concretize
each abstract value, shift it by the proper amount, and sum the results. The concretization
of an integer or of a floating-point abstract value is standard. For pointers, the concretization
uses the θ operator of 2.1.

Abstract operators for bitwise operations are implemented in the obvious way:

• left-shifting by k is implemented by adding k to the offsets, adding the abstract value 0]

for the k first bits, and discarding the abstract values that correspond to the k highest
bits.

• right-shifting by k is implemented by subtracting k from the offsets, discarding the
abstract values that correspond to the k lowest bits, and adding the abstract values 0],
−1] or [−1..0]] for the k highest bits, depending on the original sign bit.

• binary operators are implemented by splitting the abstract values on each side so that
the offsets exactly coincide, then applying the abstract transformer pointwise.

In the static analyser Eva, atomic abstract values are actually more complex because we
offer the possibility of using only some bits of a standard abstract value. Formally, they are
triples (v, bmin, bmax) where

• v is a standard abstract value of EVA

• bmin (resp. bmax) are the first (resp. last) bit that must be considered.

Thus, the concretization of (v,m,M) is γ(v, bmin, bmax) = {(n%2M)/2m |n ∈ γ(v)}. This
choice alos makes the implementation of shift operations easier and more precise: if an abstract
value of k bits must be shifted by l 6= k, we can precisely represent the result.

This domain has been integrated into Eva, starting from Frama-C Aluminium. The
first example of Figure 1 is already analyzed precisely, provided that c evaluates to either 0
or 1, or that both cases are analyzed separately. We hope to implement involved operations
on pointeurs, such as the re-alignment operations at the bottom of the figure, for Frama-C
Sulfur.

4

2.4 Customizable memory abstractions

Pointers are ubiquitous in C. Yet, they are a challenge to usual relational domains (e.g.
octagons or polyhedra), which can only relate variables. Aggregates (structs and unions)
pose similar problems.

Memory abstractions [13, 11] are generally used to bridge this gap. They abstract memory
locations by a set of abstract variables (usually). However, such memory abstractions are
generally fixed, and part of the abstract interpretation engine. In Eva, each abstract domain
is instead free to choose its own abstraction, resulting in an increased expressivity. For
convenience, Eva however supplies customizable memory abstractions, to ease the writing of
new analysis domains.

Figure 2 shows the signature Value that must be supplied in order to obtain a memory
abstraction. It consists of two parts:

1. An OCaml type t that abstracts values (integers, floating-point values, pointers),
equiped with a join-lattice structure, plus a widening operation.

2. A function track_variable that decides whether the domain is interested in a certain
variable. Untracked variables will behave as if mapped to the imprecise value top, but
for efficiency reasons they will not appear in the OCaml datastructure at all.

The OCaml functor Make_Memory returns a memory abstraction that maps all tracked
variables to an abstract value. The result of this functor can then be used to implement most
of the memory-related operations required by an Eva domain. For example, the function
add can be used to implement the abstract operation for assignment. The argument of type
Precise_locs.precise_location (which is the type of abstract locations within Eva) is
automatically converted into a set of abstract variables.

This memory abstraction will be part of Frama-C Sulfur.

2.4.1 Extension to aggregates

Currently, the memory abstraction presented above is limited to scalar variables. We are
experimenting with an extension to aggregates types, namely structs and arrays. The idea
would be to represent each individual field by an abstract variable, which we call a cell.
The function track_variable would be generalized into a function track_cell. There are
however two difficulties in doing so:

1. By using pointer arithmetics to access a memory region with an improper type, memory
accesses can refer to only parts of a cell, or worse overlap multiple cells. Although some
of the code patterns are forbidden by so-called C strict aliasing rules, many programs use
GCC option -fnostrict-aliasing and nevertheless perform them. We give examples
below.

int x = 1;

// Accesses part of x. Valid because the type used is char

char *y = *(((char*) &x)+1);

// Accesses part of x. Invalid

short *z = *(((short*) &x)+1);

5

module type Value = sig

type t

val top : t

val join : t -> t -> t

val widen : t -> t -> t

val is_included : t -> t -> bool

(** This function must return [true] if the given variable should be

tracked by the domain. All untracked variables are implicitely

mapped to [V.top]. *)

val track_variable: Cil_types.varinfo -> bool

end

module Make_Memory (Value: Value) : sig

type t

type value = Value.t

val top: t

(** The top abstraction, which maps all variables to {!V.top}. *)

val join: t -> t -> t

val widen: t -> t -> t

val is_included: t -> t -> bool

(** [add loc typ v state] binds [loc] to [v] in state. If [typ] does

not match the effective type of the location pointed, [V.top] is

bound instead. This function automatically handles the case where

[loc] abstracts multiple locations, or when some locations are not

tracked by the domain. *)

val add: Precise_locs.precise_location -> Cil_types.typ -> value -> t -> t

(** [find loc typ state] returns the join of the abstract values stored

in the locations abstracted to by [loc] in [state], assuming the

result has type [typ]. When [loc] includes untracked locations, or when

[typ] does not match the type of the locations in [loc], the

result is approximated. *)

val find: Precise_locs.precise_location -> Cil_types.typ -> t -> value

(** [remove loc state] drops all information on the locations pointed to

by [loc] from [state]. *)

val remove: Precise_locs.precise_location -> t -> t

(* [...] *)

end

Figure 2: OCaml signature for Eva customizable memory abstractions

6

int t[3] = {1, 2, 4};

// Accesses parts of t[0] and t[1]. Invalid pointer arithmetics

int w = *((int *)(((char *)&t)+2));

Our cell-based memory abstraction automatically handles such examples, by warning
when an access to a cell is partial. In those cases, the memory abstraction peforms an
imprecise read or update operation.

2. Big arrays can lead to the generation of an unwieldy number of cells, which will in turn
degrade the performance of e.g. relational numeric domains. For example, octagons
have a cubic complexity, while polyhedra are exponential in the number of variables. It
is thus of particular importance to smash those arrays, into a single summary cell. Such
summary cells are special, since the information on their contents can only grow. It is
indeed impossible to learn a newer, more precise information. This will be automatically
handled by the memory abstraction.

We expect this extension of our memory abstraction to also be part of Frama-C Sulfur.

3 Analysis of Dynamic Memory Allocators

3.1 Motivation

The automated analysis of DMA faces several challenges. Although the code of DMA is
not long (between one hundred to a thousand LOC), it is highly optimised to provide good
performance. Low-level code (e.g., pointer arithmetics, bit fields, calls to system routines like
sbrk) is used to manage efficiently (i.e., with low additional cost in memory and time) the
operations on the chunks in the reserved memory region. At the same time, the free list is
manipulated using high level operations over typed memory blocks (values of C structures) by
mutating pointer fields without pointer arithmetic. The analyser has to deal efficiently with
this polar usage of the heap made by the DMA. The invariants maintained by the DMA are
complex. The memory region is organised into a heap list based on the size information stored
in the chunk header such that chunk overlapping and memory leaks are avoided. The start
addresses of chunks shall be aligned to some given constant. The free list may have complex
shapes (cyclic, acyclic, doubly-linked) and may be sorted by the start address of chunks to
ease free chunks coalescing. A precise analysis shall keep track of both numerical and shape
properties to infer specifications implying such invariants for the allocation and deallocation
methods of the DMA.

In [6], we proposed a static analysis that is able to infer the above complex invariants of
DMA on both heap list and free list. We defined an abstract domain which uses logic formulas
to abstract DMA configurations. The logic proposed extends the fragment of symbolic heaps
of SL with a hierarchical composition operator, ⊕, to specify that the free list covers partially
the heap list. This operator provides a hierarchical abstraction of the memory region under
the DMA control: the low-level memory manipulations are specified at the level of the heap list
and propagated in a way controlled by the abstraction at the level of the free list. The shape
specification is combined with a fragment of first order logic on arrays to capture properties of
chunks in lists, similar to [3]. This combination is done in an accurate way as regards the logic
by including sequences of chunk addresses in the inductive definitions of list segments. The
main advantages and contributions of this work are (1) the high precision of the abstraction

7

1 typedef struct hdr_s {

2 struct hdr_s *fnx;

3 size_t size;

4 //@ghost bool isfree;

5 } HDR;

6

7 static void *_hsta = NULL;

8 static void *_hend = NULL;

9 static HDR *frhd = NULL;

10 static size_t memleft;

11

12 void minit(size_t sz)

13 {

14 size_t align_sz;

15 align_sz = (sz+sizeof(HDR)-1)

16 & ~(sizeof(HDR)-1);

17

18 _hsta = sbrk(align_sz);

19 _hend = sbrk(0);

20

21 frhd = _hsta;

22 frhd->size = align_sz / sizeof(HDR);

23 frhd->fnx = NULL;

24 //@ghost frhd->isfree = true;

25

26 memleft = frhd->size;

27 }

(a) Globals and initialisation

28 void* malloc(size_t nbytes)

29 {

30 HDR *nxt, *prv;

31 size_t nunits =

32 (nbytes+sizeof(HDR)-1)/sizeof(HDR) + 1;

33

34 for (prv = NULL, nxt = frhd; nxt;

35 prv = nxt, nxt = nxt->fnx) {

36 if (nxt->size >= nunits) {

37 if (nxt->size > nunits) {

38 nxt->size -= nunits;

39 nxt += nxt->size;

40 nxt->size = nunits;

41 } else {

42 if (prv == NULL)

43 frhd = nxt->fnx;

44 else

45 prv->fnx = nxt->fnx;

46 }

47 memleft -= nunits;

48 //@ghost nxt->isfree = false;

49 return ((void*)(nxt + 1));

50 }

51 }

52 warning("Allocation Failed!");

53 return (NULL);

54 }

(b) Allocation

frhd prv nxt

flso fck

hlsc
hli

_hsta _hend
«

Y2Y1X0

X0

nil
flso

(c) Part of the abstract invariant at line 34

_hsta,
frhd

_hendnilnxtprv

hli

(d) Concrete memory where green (resp. red)
arrows represent the successor relation for the
free (resp. heap) list

Figure 3: Running example with code

which is able to capture complex properties of free list DMA implementations, (2) the strong
logical basis allowing to infer invariants that may be used by other verification methods, and
(3) the modularity of the abstract domain permitting to reuse existing abstract domains for
the analysis of linked lists with integer data.

3.2 An example

We demonstrate the core ideas of our method on the C code presented in Figure 3 which
is extracted from a DMA in our benchmark, the Aldridge’s allocator [1], called LA in the
following.

The code declares first an internal data type, HDR, used to build both the heap and the
free list as follows. The field size stores the full size of the chunk (in blocks of sizeof(HDR)
bytes). In the heap list, this information is used to obtain the start address of the next chunk

8

by adding to the start address of the current chunk its size in bytes. The field fnx stores
the start address of the next free chunk and it is used to form the singly linked list of free
chunks, i.e., the free list. We added the ghost field isfree in this data type to mark explicitly
free chunks and to simplify the presentation of our method. Lines 7–10 declare several globals
variables: _hsta and _hend represent the first address of the entire memory block and the
address right after the end of memory block respectively, frhd stores the address of the head
of the free list, and memleft counts the number of free bytes in the memory region.

The method minit initializes these global variables and makes a reservation for a memory
region such that it may store the requested sz bytes plus a header value. The memory is
reserved due to the call of the system routine sbrk, that extends the data segment of the
requesting process by the input value and returns the address representing the old limit of
this segment. In the initial state, the heap list and the free list start at the same address, the
beginning of the memory region reserved, _hsta. They contain only one chunk, which is set
as free.

The method malloc tries to fulfil a request for allocating nbytes bytes. For this, it
searches a free chunk whose body has size at least nbytes using the loop at lines 34–51 which
traverses the free list and stops at the first free chunk satisfying this constraint; this way of
choosing the free chunk is called the first-fit policy. If the free chunk is much larger, then it
is split in two parts and the second part, i.e., at the end of the initial chunk, is allocated.

After several calls of allocation and deallocation methods, the memory region will be split
into several chunks including free and busy chunks. An intuitive view of the concrete state of
the DMA at line 36 is shown in Figure 3(d). The busy chunks are represented in grey. The
“next chunk” relation in the heap list (defined using the field size) is represented by the lower
arrows; the upper arrows represent the “next free chunk” relation defined by the fnx field.
Notice that the free list is sorted by the start address of free chunks in this example. This fact
eases the coalescing of successive free chunks. Indeed, LA implements the early coalescing
policy which prevents to store in the heap list two successive free chunks. Therefore, the
deallocation method of LA (not shown here) merges continuous free chunks into one bigger
free chunk and updates both lists accordingly.

Our method abstracts set of states of the DMA using sets of formulas, each formula being
a conjunction of predicate atoms. Figure 3(c) gives a graph representation for such a formula
that specifies the concrete state represented in Figure 3(d). The heap list satisfying the early
coalescing is specified by the atom hlsc(X0, hli) where hlsc is an inductively defined predicate
(formally introduced in Section ??). The value X0 and hli are stored in variables _hsta resp.
_hend, which is represented by arrows sourcing these variables. The free list is abstracted by
three atoms building the upper graph starting from X0 also. The atom flso(X0, Y1) specifies
the free list segment from the start of the list frhd to the location stored in prv, represented by
the logic variable Y1. The atom fck(Y1, Y2) specifies a free chunk at location Y1 which stores in
his fnx fiel the location Y2, stored by variable nxt. The last atom flso(Y2, nil) specifies another
free list segment, suffix of the free list until null. The predicates used in these atoms are
specified inductively using an extension of separation logic formally introduced in Section ??.

Both graphs specify fully (for the lower graph) or partially (for the upper graph) the same
concrete memory region. The upper part highlights only the free list, but all the chunks in the
free lists are also chunks of the heap list specified by the lower graph. To compose these two
abstractions of the memory region, we introduce a new operator, the hierarchical composition
“c”, which allows to relate the two levels of abstraction while keeping separated properties
related with each kind of list used. For example, we are able to express the early coalescing

9

property of the heap lists without interfering with the free list, which is not concerned about
this policy. The formula obtained are used as abstract values in order analysis algorithm to
represent program configurations. The separation of concerns provided by the hierarchical
composition is used by the analysis we propose in order to focus only on the abstraction level
required by the statements to be analysed. For example, the loop traversing the free list
at lines 34–35 requires to reason only at the free list level. The details on this analysis are
provided in [6] (a journal version is submitted).

3.3 Experimental results

We implemented the abstract domain and the analysis algorithm in Ocaml as a plug-in of
the Frama-C platform [9]. We are using several modules of Frama-C, e.g., C parsing, abstract
syntax tree transformations, and the fix-point computation. The data word domain uses as
numerical join-lattice N the library of polyhedra with congruence constraints included in
Apron [7]. To obtain precise numerical invariants, we transform program statements using
bit-vector operations (e.g., line 16 of Figure 3(a)) into statements allowed by the polyhedra
domain which over-approximate the original effet.

We applied our analysis on the benchmark of free list DMA built from the example above,
published by Aldridge [1], our implementation of the DMA proposed by Knuth in [10], the
allocator published in the famous book of C written by Kernighan and Ritchie [8]. We were
able to discover a bad list traversal in [1], and to infer the policies (and therefore ensure the
correctness) in the other allocators. More details are provided in [6].

References

[1] L. Aldridge. Memory allocation in C. Embedded Systems Programming, pages 35–42,
August 2008.

[2] G. Balakrishnan and T. W. Reps. Recency-abstraction for heap-allocated storage. In
SAS, volume 4134 of LNCS, pages 221–239. Springer, 2006.

[3] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. On inter-procedural analysis of
programs with lists and data. In PLDI, pages 578–589. ACM, 2011.

[4] D. Bühler. Structuring an Abstract Interpreter through Value and State Abstractions:
EVA an Evolved Value Analysis for Frama-C. PhD thesis, University of Rennes, 2017.

[5] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability: Shape
abstraction in the presence of pointer arithmetic. In SAS, volume 4134 of LNCS, pages
182–203. Springer, 2006.

[6] B. Fang and M. Sighireanu. Hierarchical shape abstraction for analysis of free-list memory
allocators. In LOPSTR, volume 10184 of Lecture Notes in Computer Science. Springer,
2016.

[7] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In CAV, volume 5643 of LNCS, pages 661–667. Springer, 2009.

[8] B. W. Kernighan and D. Ritchie. The C Programming Language, Second Edition.
Prentice-Hall, 1988.

10

[9] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C: A
software analysis perspective. Formal Asp. Comput., 27(3):573–609, 2015.

[10] D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms,
2nd Edition. Addison-Wesley, 1973.

[11] V. Laporte. Vrification danalyses statiques pour langages de bas niveau. PhD thesis,
Universit de Rennes 1, 2012.

[12] J. Liu and X. Rival. Abstraction of arrays based on non contiguous partitions. In VMCAI,
volume 8931 of LNCS, pages 282–299. Springer, 2015.

[13] A. Miné. Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In LCTES, pages 54–63. ACM, 2006.

[14] P. Sotin and X. Rival. Hierarchical shape abstraction of dynamic structures in static
blocks. In APLAS, volume 7705 of LNCS, pages 131–147. Springer, 2012.

11

	Introduction
	Analysis with Frama-C
	Memory Locations in Frama-C Eva
	Value Abstraction for Pointer Values
	Bit-masking on pointers
	Customizable memory abstractions
	Extension to aggregates

	Analysis of Dynamic Memory Allocators
	Motivation
	An example
	Experimental results

