
Static Analysis for High Level Programs

Deliverable D2-2

ANR project VECOLIB

May 2017

Abstract

This deliverable presents the static analyses developed during the Vecolib project for
the analysis of programs with containers. These analyses are based on abstract interpre-
tation and specific abstract domains for set, multiset, and sequences containers.

1 Motivation and Related Work

Containers are general-purpose data structures for inserting, retrieving, removing, and iter-
ating over elements. Examples of containers are array, list, vector, map, set, stack, queue,
etc. They are widely used in client programs are therefore provided by common programming
languages or standard libraries.

There are many different kinds of containers, varying in the convenience or efficiency of
certain operations. However, from a point of view of the iteration operation, containers divide
in two classes, as observed by Dilling et al [3]:

• position dependent containers where a position inside the container has a well-defined
meaning and the iteration over its elements is done in a pre-defined order; such containers
are array, vector, list, stack, and queue containers;

• value dependent containers where the iteration order may be undefined, for example
set, multiset and map.

This classification captures the kind of properties could be specified on a container. There-
fore, the position dependent properties like sorting for the first class, i.e., properties relating
the values stored at different positions of the container:

∀i1, i2 ∈ positions(c). i1 ≤ i2 ⇒ get(c, i1) ≤ get(c, i2),

where i1, i2 are positions and c is the container for which accessing the value et some position
is done using get function. For the value dependent containers, universal properties over
values stored, e.g., all element greater than 5:

∀i ∈ positions(c). get(c, i1) ≥ 5.

Another class of properties focus on relations between several containers, e.g., all values of
the container c1 are greater than the values stored by c2:

∀i1 ∈ positions(c1), i2 ∈ positions(c2). get(c1, i1) ≥ get(c2, i2).

1



The verification of programs using containers, called client programs in the following,
could require to deal with such constraints. Notice that, for position dependent containers,
the class of properties as above involving positions related by complex constraints may not
have a decidable satisfiability or entailment problems. A static analyser manipulating such
constraints should either work on a decidable class of constraints or propose sound procedure
for the decision problems required by the analysis.

In [3], Dillig et al proposes a static analysis based on a domain of indexed constraints
to automatically infer properties on position or value dependent containers. Their domain
has been implemented in the tool Compass and applied to the analysis of client programs
using C++ libraries. The experimental results obtained demonstrate the good precision of the
analysis proposed: more than 50% of false positives have been eliminated.

Another approach to represent constraints over containers has been proposed in [6] and it
considers higher-order functional programs. It uses the Liquid Types framework [7] to reduce
the safety of a functional program to the safety of a first-order imperative program. In this
way, the safety of the functional program can be checked using any program analysis for
imperative programs introduced in the literature.

2 Principles of Static Analyses

In general, a static analysis is built on (i) an abstract representation of sets of program
configurations, where the set of values of this abstraction is called an abstract domain, and
(ii) an encoding of the program statements in terms of abstract values transformations, also
called abstract transformers.

We fix the set of operators a client program may call on a container depending on its kind:
value or position dependent. The table below lists these operations are give their intuitive
semantics.

Position dependent
init() creates the empty container
is_empty(c) test for empty container
add_first(c,v) push a value before the first position
add_last(c,v) push a value after the last position
remove_first(c) remove the value at the first position
remove_last(c) remove the value at the last position
first_pos(c) return the first position or -1
next_pos(c,p) return the next position or -1
last_pos(c) return the last position or -1
get_at(c,p) return the value at a valid positon or nil
isin(c,v) returns the position of the value in the container or nil

Value dependent
init() creates the empty container
is_empty() test for empty container
add(c,v) push a value
remove(c,v) remove a value
isin(c,v) return true iff the value is in the container

For each kind of container, we define in the next sections an abstract domain and the

2



abstract transformers for the above operators.

3 Abstract Domain for Sequences

Sequences are natural abstractions for the unbounded position dependent containers like vec-
tors and lists. The abstract domain we propose is inspired from our previous work on the
analysis of programs manipulating dynamic linked lists [1], where sequences where used as
model for the heap content. The main difference with this previous work is the abstract
transformers required on the sequence abstract domain. For programs using a low level ma-
nipulation of the heap, the operations on the sequence model where: split the sequence in a
head value and the remaining of the sequence, add a value at the end of the sequence, con-
catenate two sequences. For the programs manipulation position dependent containers, we
have to implement the operations in the table above including the ones concerning positions,
which is a novelty w.r.t. the previous usage of this domain.

The abstract domain AS has as values special constraints over a set of variables consisting
of:

• a set C of position dependent containers,

• a set V of integer variables,

• a set P of positions variables (although in most of languages positions are usually inte-
gers, we keep them separate to relate easily valid positions), and

• a set LC of integer variables, one for each container variable in C, that represent the size
of the container.

The constraints stored have the following for:(
E ∧

∧
G(~y)∈G

∀~y. G(~y)⇒ U(~y)
)
, where

• E is a value of a numerical abstract domain AZ (such as the Octagons abstract domain,
the Polyhedra abstract domain [5], etc.) constraining the set of variables V ∪ P ∪ LC .
In is called the existential part of the abstract value.

• ~y is a set of fresh position variables interpreted as integers representing positions in the
sequences,

• G is a set of guards G(~y), which belong to a specific set of patterns. From our experience
with the analysis of client programs, we include in this set the following patterns (for
any variable in C:

– y ∈ positions(s) which corresponds to a universal quantification over all the
values in the sequence s,

– y1 ∈ positions(s1) ∧ y2 ∈ positions(s2) which allows to compare the values of
two containers,

– y1 ≤ y2 ∈ positions(s) which allows to express sorting properties, and

– y1 ∈ positions(s1) ∧ y2 ∈ positions(s2) ∧ y1 = y2 which allows to compare,
position by position, the values of two sequences.

3



• U(~y) is a value in a numerical abstract domain AZ constraining the set of variables
get(s, y), denoting the integer at position y in the sequence s, len(s), and get(s, 0). A
term s[y] appears in U(~y) only if the guard G(~y) contains a constraint ~y ∈ positions(s).
This restriction is used to avoid undefined terms. For instance, if s denotes a sequence
of length 2 then the term get(s, y) with y interpreted as 3 is undefined.

For example, the following abstract value represent configurations of a position dependent
container c which has length less than ` and it is sorted:

len(c) < ` ∧ ∀y1 ≤ y2 ∈ positions(c)⇒ get(c, y1) ≤ get(c, y2)

To define the abstract transformers implementing the container operations, we use the
basic operations described in [4, 2] for the domain of sequences:

• lattice operations: built top > and bottom ⊥ abstract values, test inclusion of abstract
values a]1 v a]2,

• widening of two abstract values a]1∇a
]
2,

• in an abstract value a], split a sequence s after the position p to obtain new sequences
sh and st, split(a], s, p, sh, st),

• in an abstract value a], fold a sequence of sequence variables [s1, . . . , sn] into a sequence
variable s (for existential quantifier elimination), fold(a], [s1, . . . , sn], s).

We also define the following new basic operations:

• built a sequence s of one value v, newunit(a], s, v).

Using the above basic operations, the abstract transformers for operations on containers are
defined as follows:

• init(c) introduces a new constraint for the container assigned in the existential part:
len(c) = 0,

• is_empty(c) intersects the abstract value with the constraint len(c) = 0 and returns
true iff the value obtained is not empty (i.e., the constraint is still satisfiable).

• add_first(c,v) applies first newunit(a], s, v) to obtain a]1, then applies folding

fold(a]1, [s, c], c).

• add_last(c,v) applies first newunit(a], s, v) to obtain a]1, then applies folding

fold(a]1, [c, s], c).

• remove_first(c) applies splitting at position 0, split(a], c, 0, ch, c), and the value of
ch is bound to the result of the operation.

• remove_last(c) applies splitting at position len(c) − 2, split(a], c, len(c) − 2, c, cl),
and the value of cl is bound to the result of the operation.

• first_pos(c) applies emptiness test and if it returns false then returns 0.

4



• next_pos(c,p) intersects with the constraint len(c) > p+1 and is the obtained abstract
value is not empty, sets the results to p + 1; otherwise returns -1.

• last_pos(c) applies emptiness test and if it returns false then returns len(c)− 1.

• get_at(c,p) intersects with the constraint len(c) > p >= 0 and if it returns an non
empty abstract value, then applies split(a], c, p−1, ch, ct), and constrains the the result
to be equal to get(ct, 0).

• isin(c,v) generates a set of four possible abstract values depending on the position
of the value v: at the first resp. last position, in the middle of c or never present in c.
Notice that the abstract transformer for this operation is not very precise because we
can not represent inside the abstract values negative assertions.

4 Abstract Domain for Multisets

The abstract domain AM has as values special constraints over a set of variables consisting
of:

• a set C of position dependent containers,

• a set V of integer variables,

• a set P of positions variables (although in most of languages positions are usually inte-
gers, we keep them separate to relate easily valid positions), and

• a set LC of integer variables, one for each container variable in C, that represent the size
of the container.

The constraints stored have the following for:(
E ∧

∧
G(~y)∈G

∀~y. G(~y)⇒ U(~y)
)
, ∧

(∧
i

ti1 = ti2
)

where

• ti1, t
i
2 are multiset terms of the form u1 ∪ · · · ∪ us (s ≥ 1 and ∪ is the union of multisets)

where basic terms ui are of the form (1) mshd(n) (resp. d) representing the singleton
containing the first integer of the sequence labeling n (resp. the value of d), or (2)
mstl(n) representing the multiset containing all the integers of the sequence n except
the first one. As a shorthand, mhd(n) ∪ mtl(n) is denoted by ms(n).

References

[1] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. On inter-procedural analysis of
programs with lists and data. In PLDI, pages 578–589. ACM, 2011.

[2] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Abstract domains for automated
reasoning about list-manipulating programs with infinite data. In VMCAI, volume 7148
of LNCS, pages 1–22. Springer, 2012.

[3] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using containers. SIG-
PLAN Not., 46(1):187–200, Jan. 2011.

5



[4] C. Dragoi. Automated verification of heap-manipulating programs with infinite data. PhD
thesis, Paris Diderot – Paris 7, 2011.

[5] B. Jeannet and A. Miné. APRON: A library of numerical abstract domains for static
analysis. In Computer Aided Verification, CAV’2009, volume 5643 of LNCS, pages 661–
667, 2009. http://apron.cri.ensmp.fr/library/.

[6] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verifying Functional Programs Using
Abstract Interpreters, pages 470–485. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[7] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. SIGPLAN Not., 43(6):159–169,
June 2008.

6

http://apron.cri.ensmp.fr/library/

	Motivation and Related Work
	Principles of Static Analyses
	Abstract Domain for Sequences
	Abstract Domain for Multisets

