
Verified Implementation of the Bounded List
Container with VeriFast

Raphaël Cauderlier and Mihaela Sighireanu

IRIF, University Paris Diderot and CNRS, Paris, France
firstname.name@irif.fr

Abstract. Containers are ubiquitous in programming but few container
libraries have yet been formally verified. Therefore, a trend in software
verification is providing fully verified container libraries. We contribute
in this paper by presenting a verified implementation of the doubly linked
list container which manages the list in fixed size, heap allocated arrays.
Our library is implemented in C, but we wrote the code and its specifi-
cation by imitating the ones provided by GNAT for the standard library
of Ada 2012. We chose C in order to benefit from the top tools and
results in verification of programs manipulating the heap and specified
in Separation Logic. We employ the VeriFast tool which provides a high
performance deductive verification environment for Separation Logic ex-
tended with abstract data types theories. The specifications we obtain
entail the contracts of the Ada library and include new features. In par-
ticular, we employ a specification method based on a precise model of
the data structure which facilitates the verification and captures entirely
the library contracts.

1 Introduction

One of the main goals of the standard libraries of programming languages is
to provide efficient implementations for common data structures. To abstract
the details of these implementations, modern programming languages propose
generic interfaces to data containers. These interfaces are informally specified
in terms of well understood mathematical structures such as sets, multisets,
sequences, and partial functions. The intensive use of these libraries makes im-
portant their formal verification.

However, the functional correctness of these libraries is challenging to verify
for several reasons. First, their implementation is highly optimized at a very
low level, it employs complex data structures and manages the memory directly
through pointers/references or ah-hoc allocators. Second, although the container
interface is defined based on classic operations on mathematical structures, few
standard libraries provide a formal specification of its containers. Notable excep-
tions are, e.g., Eiffel [10] and SPARK [4]; recently, [2] provided a specification of
Ada 2012 standard library. Such formal specifications are very important when
the library uses constructs that exceed the scope of the mathematical structure.
For example, iterators in Java are generic and can exist outside the container,

2

while they are part of the container in Ada. Third, the specification of the link be-
tween the low level implementation and the mathematical specification requires
hybrid logics that are able to capture both low level and high level specifications
of the container. For verification purposes, these logics shall be supported by
tools for deductive verification.

In this work, we focus on the formal doubly linked lists container, which is
a GNAT implementation of the doubly linked lists container in the standard li-
brary of Ada 2012 [1]. The implementation is compatible with SPARK 2014 and
“meant to facilitate the formal verification of code using this container” [7]. The
lists have bounded capacity, fixed at the list creation, and thus avoid dynamic
memory allocation during the container use. This feature is required in critical
code, where it is necessary to supply formal guarantees on the maximal amount
of memory used by the running code. Due to the introduction of formal con-
tracts in Ada 2012, the library has been specified recently1 based on a previous
specification in Why3 by Dross et al. [4]. However, the formal verification of the
library can not be done in SPARK because it employs language features (e.g.,
low level memory manipulation) not allowed in SPARK. In addition to its in-
dustrial use and the availability of its formal specification, the implementation
of bounded lists exhibits interesting invariant properties. It combines a memory
allocator keeping, in addition to the doubly linked list a singly linked list for the
free memory regions.

This implementation choice guided us to use Separation Logic [11] (SL), a
formalism that permits a precise modelling of the heap and pointer management.
The absence of tools for deductive reasoning in SL on Ada determined us to
translate the Ada code into C, for which powerful deductive verification tools
exists. We employ VeriFast [8], which allows to specify precisely the organisation
of heap fragments using inductive predicates defined by SL formulas. Moreover,
VeriFast provides means to combine these inductive predicates with polymorphic
algebraic data types, which is a feature playing an important role in this work.

Indeed, to accurately translate the container contracts from Ada, we have to
follow the approach of representation predicates introduced for SL by O’Hearn
et al. [9] and generalised in several works, e.g., by Arthur Charguéraud [3]. It
consists of relating heap fragments with detailed algebraic models using inductive
predicates. The algebraic models are then constrained in the pure part of SL
formulas, i.e., the part not constraining the heap. We show that this approach is
expressive enough to obtain a faithful translation of Ada contracts for our library.
Moreover, we show that the specifications obtained are more precise with respect
to heap organisation and ease the deductive verification process, i.e., writing the
lemmas.

To summarise, our contribution is (1) a fully verified implementation in C of
a bounded doubly linked list, (2) a contribution to the VeriFast predefined library
with predicates and lemmas which are useful for the verification of this implemen-
tation in any imperative programming language, (3) a practical demonstration
of the power of representation predicates for both expressiveness of specifica-

1 The annotated version will be published in June 2017.

3

tions and deductive verification. The sources of this contribution are available
at http://vecolib.imag.fr/index.php/Deliverables.

The paper begins by stating, in Section 2, the principles we adopt for the
coding and specification of the bounded lists container. Then, we detail the case
study and highlight the main ingredients of its verification in Section 3. We end
by presenting the experimental results and the lessons learnt from this work in
Section 4.

2 Principles of Coding and Specification

This work belongs to a research project whose aim is to demonstrate that the
existing technology in deductive verification based on Separation Logic is quali-
fied to prove functional correctness of libraries of containers designed for critical
code. In this paper, we provide evidence for the library provided by GNAT [7]
for doubly linked lists (DLL). This library, coded in Ada 2012, implements DLL
with bounded capacity, dynamic size, and fixed size of stored data (elements).
The functional specification of this library is given by method contracts, written
by Emmanuel Briot and Claire Dross from AdaCore [2], using SPARK 2014, the
subset of Ada which is designed for programming safety-critical applications.
The logic fragment used in these contracts is first order logic with functional
abstract data types.

Because the tools for deductive verification in Ada or SPARK do not (yet)
include the Separation Logic technology, we turn to C, or more precisely to its
subset supported by the verification environment VeriFast [8]. We have coded in
a subset of C the linked list container and translated its functional specification
in the logic fragment supported by VeriFast. This process was possible because
both the C programming language and the VeriFast logic work at a lower level
of abstraction than Ada. However, because of differences between programming
and specification languages involved, the translation is not a routine as explained
in the remainder of this section.

Coding in C: The implementation in Ada employs constructs that can not be
directly translated in C, mainly object oriented features (e.g., genericity, type
constructor, default initialisation), and the restricted types (e.g., range restric-
tions on integers). For example, the Ada container is generic on the type of the
elements stored in list cells; in C, we have coded the type of elements by a record
with one integer field. [How severe are the semantic differences between the Ada
and the C? C code complex aliasing patterns such as lists of lists.] The type of
the container is parameterized by an integer giving its capacity; we have coded
it by an additional field in the record type defining the container. The restricted
integer types in Ada are translated to their base type (usually integer) and the
range restrictions are imported in the specification as pre-conditions or type in-
variants. These coding principles can be used to obtain the C implementation of
other formal containers available within GNAT, e.g., hashed sets and maps.

The coding principles faced some restrictions of VeriFast. For example, work-
ing with arrays of records in VeriFast requires to transform array access to

http://vecolib.imag.fr/index.php/Deliverables

4

pointer arithmetics, e.g., a[i].next in Ada is translated to the equivalent code
(a+i)->next. Also, only call by reference is allowed for record parameters.

Specification in VeriFast: The specification in Ada is “model” based: it constrains
the models on which are mapped the values of the container and of its valid
cursors2. [How faithful is the encoding of the specification? Pure function in
VeriFast, impure only in SPARK.] As expected, the model of the doubly linked
list container is the sequence of the values stored; the model of its valid cursors is
a mapping from valid cursor values to positions in the sequence of elements. The
interesting point is that these models are themselves written in Ada: the GNAT
library includes “functional” containers for sequences and maps, i.e., simpler,
less efficient implementations. The models are obtained from the values using
two functions coded in Ada, Model resp. Positions. The aim of such functional
models is to obtain executable specifications, which is important for testing
tools. However, for deductive verification in SPARK, the aforementioned models
are mapped to the corresponding algebraic data types in order to call inductive
reasoning or SMT solvers.

It is natural to import in VeriFast the model based characteristic of the func-
tional specification, due to the ability to define ghost algebraic data types and
representation predicates, i.e., inductive predicates on the heap which compute
abstract data type models. Moreover, VeriFast provides libraries of polymorphic
ADTs for lists and association lists together with operations (fixpoints in Veri-
Fast), predicates, and lemmas which are useful for inductive reasoning. The use
of representation predicates (explained in the next section) introduces an im-
portant difference between the two specifications. In VeriFast, the model of the
container is more precise, and allows us to obtain the model of cursors from it,
without passing by the container. We consider that this is an important design
choice, which simplifies the writing of annotations and the verification.

The translation of contract cases requires some adjustment. Indeed, SPARK
contracts may define distinct behaviours of methods and the specification of
our container uses such contracts intensively, as well as relational contracts that
link the input value of a function parameter to its output value. Contract cases
and relational contracts are not supported by VeriFast. However, we are able to
translate them faithfully thanks to conditional formulas. Another adjustment is
done in the import of Ada contracts calling Ada functions which do not belong
to the functional models, because VeriFast does not allow such specifications. We
import them by inserting their contracts.

Notice that the Ada implementation contains ghost code, mainly assertions,
and code which is not specified. For example, the internal invariants of the
container type are dynamically checked using ghost code. All these invariants
are statically checked in our C implementation by the VeriFast annotations. We

2 In Ada 2012, “a cursor designates a particular node within a list (...). A cursor keeps
designating the same node (...) as long as the node is part of the container, even if
the node is moved in the container. [...] If [a cursor] is not otherwise initialized, it is
initialized to [...] No_Element.” [1]

5

provide contracts for all methods not specified in the Ada code as required by
the modular analysis of VeriFast.

3 Dynamic Bounded Doubly-Linked Lists

3.1 List container

List cell Also called node in the following, the list cell encapsulates the container
element together with links to the next and previous cell in the list. We assume
that elements are integers. In Ada, the type of the element is an abstract type,
parameter of the library.

typedef int Element_Type;

struct Node_Type { int prev; int next; Element_Type elem; };

The predicate node specifies a node allocated on heap and its model as follows:

inductive purenode = purenode(int , int , Element_Type);

predicate node(struct Node_Type* n, int capacity;

purenode pn) =

malloc_block_Node_Type(n) &*&

n->prev|->?iprev &*& n->next|->?inext &*&

n->elem|->?pelem &*&

inext >=0 &*& inext <= capacity &*&

pn== purenode(iprev , inext , pelem);

The inductive type purenode record the values of node fields. To specify that
the node at location n is allocated on the heap, we use the VeriFast predicate
malloc_block_Node_Type generated automatically at the definition of the record
Node_Type. The values stored by the record fields are introduced (using question
marks) by points-to atoms, e.g., n->elem|->?pelem. The value stored in the next

link is bounded by the parameter capacity. The parameter pn is a computed
parameter, i.e., deducible from the other parameters of the predicate. The con-
straints on the heap (also called spatial) and on values (also called pure) are
composed by the conjunction operator &*& which represents both the separating
conjunction and the logic conjunction.

There are two kinds of nodes: nodes occupied by list elements and nodes
not yet used in the list, i.e., free. Free nodes have the prev field at −1 and the
elem field is irrelevant. Occupied nodes have the prev field set to a non-negative
integer and the elem field is relevant. We define model functions (introduced by
fixpoint) and derived predicates using them to identify the two kinds of nodes.

fixpoint bool is_free(purenode n) { return pprev(n)==-1; }

predicate free_node(struct Node_Type* n, int capacity;

int inext) =

node(n, capacity , ?pn) &*&

is_free(pn)== true &*& inext== pnext(pn);

fixpoint bool is_occupied(purenode n) { return pprev(n)>=0; }

6

predicate occupied_node(struct Node_Type* n, int capacity;

purenode pn) =

node(n, capacity , pn) &*& is_occupied(pn)== true;

Acyclic doubly linked list The container stores the doubly linked list (DLL) in
an array of fixed capacity, which is given at the container creation. The number
of elements stored in the list can not exceed the container capacity. The nodes of
the DLL are stored starting from the index 1; index 0 plays the role of the null
reference. Therefore, type of the list container is given by the following record:

struct List {

int capacity; struct Node_Type * nodes; int size;

int free; int first; int last;

};

Cells at the extremity of the lists are stored at indexes first resp. last. In
Ada, the fields of the container are all initialized, the array of nodes allocated,
and the types used for indexes are constrained. We shift these constraints in the
C function playing the role of the container constructor and in the representation
predicate of the container which is used to specify function preconditions.

prev next elem

-1 0 ?

prev next elem

0 2 e1

prev next elem

1 0 e2

prev next elem

-1 0 ?

prev next elem

-1 0 ?

0 1 == first 2 == last 3 == -free 4

prev next elem

-1 0 ?

prev next elem

0 3 e1

prev next elem

-1 4 ?

prev next elem

1 0 e2

prev next elem

-1 0 ?

0 1 == first 2 == free 3 == last 4

Fig. 1. Two doubly linked lists of capacity 4 and length 2

The representation predicate of the list of occupied nodes is defined classically
as a list segment starting at node ifrom, ending at node ilast and linked with
the previous node iprev and the following node ito:

predicate dll(struct Node_Type * tab , int capacity ,

int iprev , int ifrom , int ilast , int ito;

list <purenode > values) =

ifrom==ito ?

(iprev== ilast &*& values ==nil <purenode >)

: (occupied_node(tab+ifrom , capacity , ?p) &*&

pprev(p)== iprev &*&

dll(tab , capacity , ifrom , pnext(p), ilast , ito , ?vtl) &*&

values ==cons(p, vtl));

where pprev, pnext, and pelem return the previous, next, resp. element compo-
nent of a purenode value. This form of the predicate for acyclic DLLs has good

7

properties and eases the generation of lemmas for composition of list segments
required to prove code doing list traversal [6,3].

The model built for the DLL is more precise than the one built for the
container in Ada, since it also includes the links of cells. This design choice is
very important for the verification process because this precise model allows
to obtain both models used in Ada (i.e., the sequence of values and the map of
cursors) while keeping the predicate compositional. We have also tried a solution,
close to the Ada specification, where the predicate computes the two models
(sequence and map). This solution generates a lot of annotations and requires
more lemmas.

Acyclic list of free nodes The free nodes are organized in a singly linked list,
called the free-list. The start of this list is given by the field free as follows:
if free is negative, the list is built from all nodes stored between −free and
capacity; otherwise, the list starts at index free and uses as successor relation
the next field of nodes. Figure 1 illustrates the two kinds of a free list. The first
kind of free list is used to obtain a fast method to initialize the nodes in the
free-list (mainly next fields, all set to 0) at the DLL initialization.

The representation predicates of the two kinds of free-lists define the model
of free-list as the sequence of indexes of free nodes:

predicate uninit_free(struct Node_Type* tab , int capacity ,

int ifrom , int ito; list <int > model) =

ifrom==ito ? model==nil

: (ifrom <ito &*& free_node(tab+ifrom , capacity , 0) &*&

uninit_free(tab , capacity , ifrom+1, ito , ?mtl) &*&

model ==cons(ifrom , mtl));

predicate init_free(struct Node_Type* tab , int capacity ,

int ifrom , int ito; list <int > model) =

ifrom==ito ? model==nil

: (ifrom >0 &*& free_node(tab+ifrom , capacity , ?inext) &*&

init_free(tab , capacity , inext , ito , ?mtl) &*&

model ==cons(ifrom , mtl));

We choose a uniform shape for these predicates as list segments in order to
exploit the lemmas satisfied by such predicates [6,3] for (de)composition of list
segments. The two kinds of free-list are combined in a predicate that instantiates
the correct predicate depending on the sign of free.

predicate free_nodes(struct Node_Type* tab , int cap ,

int free , int size; list <int > fmodel) =

free >=0 ? (init_free(tab , cap , free , 0, ?M) &*&

fmodel ==M &*& length(M)+size==cap)

: (uninit_free(tab , cap , abs(free), cap+1, ?M) &*&

fmodel ==M &*& length(M)+size==cap);

Representation predicate The invariants of the container are specified by the
following predicate:

8

predicate list(struct List* L;

struct Node_Type* tab , int cap ,

int free , list <int > free_model ,

int head , int last , list <purenode > vs) =

malloc_block_List(L) &*&

L->nodes|->tab &*& L->capacity|->cap &*& cap > 0 &*&

malloc_block(tab , sizeof(struct Node_Type)*(cap +1)) &*&

node(tab , cap , purenode(-1,0,_)) &*&

L->first|->head &*& head >=0 &*& head <=cap &*&

L->last|->last &*& last >=0 &*&

dll(tab ,cap ,0,head ,last ,0,vs) &*& L->size|->length(vs) &*&

L->free|->free &*& free <=cap &*&

free_nodes(tab ,free ,length(vs),cap ,free_model);

The predicate specifies that the container is allocated on the heap, and its field
tab is also allocated as a block containing capacity+1 records of type Node_Type.
The first node of this array (at address tab) has its link fields at -1 and 0. The
remaining nodes are split between the dll and free_nodes predicates due to the
separating conjunction. The size of the DLL is exactly the one of its model and
stored in the field size.

In VeriFast, allocated blocks are implicitly translated as arrays of bytes (pred-
icate chars). To access the i-th node of nodes inside the block allocated for it,
we introduce an axiom that intuitively says that if an array of chars at address
tab+i is not empty, we can split it such that we identify a node at its start:

lemma void open_malloc_block(struct Node_Type* tab ,

int i, int len)

requires len > 0 &*&

chars ((void *)(tab+i),len*sizeof(struct Node_Type),_) ;

ensures malloc_block_Node_Type (?n) &*& n == tab+i &*&

n->prev|-> _ &*& n->next|-> _ &*& n->elem|-> _ &*&

chars ((void *)(tab+i+1),(len -1)* sizeof(struct Node_Type),_);

{ assume(false); }

Examples of function contracts The contract of the constructor of the list pro-
vides the default values for the fields of the container:

struct List* List(int capacity);

//@ requires capacity > 0;

//@ ensures list(result, ?tab, capacity, -1, _, 0, 0, nil);

The contract for the list equality test illustrates how the precise model (vari-
ables mL and mR) is used to extract the sequence of values by the logic function
model:[Use fractions for aliasing and read-sharing]

bool is_equal(struct List* L, struct List* R);

/*@ requires list(L, ?tL, ?cL, ?fL, ?fmL, ?hL, ?lL, ?mL) &*&

list(R, ?tR, ?cR, ?fR, ?fmR, ?hR, ?lR, ?mR); @*/

/*@ ensures list(L, tL, cL, fL, fmL, hL, lL, mL) &*&

list(R, tR, cR, fR, fmR, hR, lR, mR) &*&

result == (model(mL) == model(mR)); @*/

9

For some methods, the contract we specify is more precise than in Ada due
to the lack of encapsulation of container fields. For example, for the method
clear, the Ada contract specifies only that, at the end of the method, the list
has an empty model. In our contract, the values of fields for list head and tail
are constrained.

void clear(struct List* L);

//@ requires list(L, ?t, ?c, ?f, ?fm, ?h, ?l, ?m);

//@ ensures list(L, t, c, ?f1, ?fm1, 0, 0, m1) &*& length(m1)==0;

3.2 Cursors

Cursors are used to mark positions in the list. We implement them as a record
storing an array index. The special cursor No_Element is defined as a global
constant storing index 0.

struct Cursor { int current; };

const struct Cursor No_Element = { 0 };

Following this implementation, the model of a cursor is given by a value of
inductive type cursor.

inductive cursor = NoElem | Valid(int);

predicate valid_cursor_or_noelem(struct Cursor* C,

int index , int first , list <purenode > m;

cursor pc,

list <purenode > before , list <purenode > after) =

C->current|->index &*&

pre_valid_cursor_or_noelem(index ,first ,vs,pc,before ,after);

The predicate pre_valid_cursor_or_noelem captures the semantics of a cursor
storing an integer index. It computes from m, the precise model of the DLL,
and first, its starting index, the model of the cursor and the two list segments
before and after, into which C splits m. Notice that it is a pure predicate and
may be duplicated in a specification for the need of verification.

Given a DLL container, there is a bijection between valid cursor models and
the positions in the list. This bijection is modeled in our specification by an
association list. We specify a library of logic functions, predicates, and lemmas
required by the annotations of this model of cursors. One of these functions is
positions, which builds the map model from the pure model of the list and the
index of the first element of the list. It is used to specify the contracts of methods
using cursors. For example, the function element returning the value stored at
the position in the list given by the cursor C has the following contract:

Element_Type element(struct List* L, struct Cursor* C)

/*@ requires list(L,?tab,?capacity,?free,?fm,?head,?last,?m) &*&

valid_cursor_or_noelem(C,?index,head,m,?pc,?bef,?aft) &*&

P_Has_Key(positions(m,head,1),pc)==true; @*/

/*@ ensures list(L,tab,capacity,free,fm,head,last,m) &*&

valid_cursor_or_noelem(C,index,head,m,pc,bef,aft) &*&

result==M_Element(model(m),P_Get(positions(m,head,1),pc)); @*/

10

where the logic function P_Has_Key tests if the model of C, i.e., pc, is a key in the
map of valid cursors, and P_Get returns the exact position of this cursor. The
function M_Element returns the element, in the sequence of values, model(m), at
the position of this cursor.

[How useful are the specifications? Helpful to verify a client program. Notice
the abstract definition of list predicate in .h.]

4 Experiments and Lessons Learnt

We have coded, specified, and verified 22 main methods from the 30
provided by the container library including equality and emptiness tests,
clear, assign and copy, getting and setting one element, manipulating the
cursors, inserting and deleting at some cursor, finding an element be-
fore and after a cursor. The size of our development is given below.

Table 1. Statistics on the proof
File #pred #fix- #lemma lines

points annot code

vflist.gh 2 7 8 177 –

vfseq.gh 14 10 17 355 –

vfmap.gh 12 3 2 185 –

cfdlli.h 0 4 0 319 45

cfdlli.c 16 4 40 1473 385

Total 42 28 67 2524 430

To obtain a specification close
to the Ada one, we wrote two
files of logic definitions for mod-
els (vfseq.gh and vfmap.gh) ex-
tending the VeriFast libraries. Ad-
ditional fixpoint functions and
lemmas required on VeriFast lists
are written in file vflist.gh. The
rate between source code and an-
notations is about 1 for 6; in Ada,
the rate between source code and contracts is already of about 1 for 3.

When specifying the private functions for node (de)allocation (specifications
not provided in Ada), we obtain very big contracts of nearly 20 atoms, because
these methods break the invariant of the container. However, they are both used
with code such that the sequence of these calls restore the container invariant.
Collapsing of these methods may reduce the size of annotations.

The choice of a precise model for the specification of the container has two
main advantages: it facilitated the writing of lemma for composition of list seg-
ments and it allowed to manipulate several abstractions of the container, includ-
ing the sequence of values stored, the map of valid cursors, and the container
size. All these abstractions are catamorphisms on the precise model, so easy to
be defined with VeriFast fix-points and enabling efficient decision procedures [12].

We found useful the two ways of specifying inductive predicates in VeriFast:
by case on the model or by case over the aliasing of heap locations. We started
with the first style, but finally chose the second to bring advantages of computed
predicates. In conclusion, VeriFast provided us all the tools required to specify
and verify this library. We encountered some troubles with the use of arrays of
records, solved by pointer arithmetics and the axiom discussed in the previous
section. We found very pleasant the application of automatic lemmas, which
discharged most of the inductive reasoning on lists and arithmetics. We got

11

around the absence of contract cases by using conditional expressions and by
expressing the relation between old and new values through the precise model.

[Related work: GrassHopper, Viper or Dafny, Why3.] [Related work: discuss
Polikarpova et al.] This work is the first deductive verification we are aware of for
this implementation of the container. VeriFast provides an example of an array
list storing pointers, but which includes only simple functions (append and re-
move). Static analysers like Astrée have been applied to similar implementations
but the capacity of the containeris fixed to a constant. Recently, a more complex
container has been verified with SPARK, the bounded sets implemented with
RBT [5]. However, this experiment did not consider the full implementation and
omits cursors.

Acknowledgements: We thank Claire Dross from AdaCore for guiding us through
the Ada standard library and for supplying the last version of its specification.
We thank Samantha Dihn for the first C version of the Ada containers.

References

1. Ada Europe. Ada Reference Manual - Language and Standard Libraries, Chapter
A.18.3 The Generic Package Containers.Doubly_Linked_Lists Norm ISO/IEC
8652:2012(E), 2012. Available online at http://www.adaic.org/resources/add_

content/standards/12rm/html/RM-TTL.html.
2. E. Briot and C. Dross. Generic Ada library for algorithms and contain-

ers. Github project, 2017. Available online at https://github.com/AdaCore/

ada-traits-containers.
3. A. Charguéraud. Higher-order representation predicates in separation logic. In

Proceedings of CPP, pages 3–14. ACM, 2016.
4. C. Dross, J. Filliâtre, and Y. Moy. Correct code containing containers. In TAP,

volume 6706 of LNCS, pages 102–118. Springer, 2011.
5. C. Dross and Y. Moy. Auto-active proof of red-black trees in spark. In NFM,

volume to appear of LNCS. Springer, 2017.
6. C. Enea, M. Sighireanu, and Z. Wu. On automated lemma generation for separation

logic with inductive definitions. In ATVA, volume 9364 of LNCS, pages 80–96.
Springer, 2015.

7. GNU Fundation. GNAT library components in gcc 7.1. Available
at https://sourceware.org/svn/gcc/tags/gcc_7_1_0_release/gcc/ada/ files
a-cfdlli.ad*.

8. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In K. Ueda, editor, Proceedings of APLAS, volume 6461 of LNCS, pages 304–311.
Springer, 2010.

9. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In Proceedings of POPL, pages 268–280. ACM, 2004.

10. N. Polikarpova, J. Tschannen, and C. A. Furia. A fully verified container library.
In Proceedings of FM, volume 9109 of Lecture Notes in Computer Science, pages
414–434. Springer, 2015.

11. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of LICS, pages 55–74. IEEE, 2002.

12. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. In POPL, pages 199–210. ACM, 2010.

http://www.adaic.org/resources/add_content/standards/12rm/html/RM-TTL.html
http://www.adaic.org/resources/add_content/standards/12rm/html/RM-TTL.html
https://github.com/AdaCore/ada-traits-containers
https://github.com/AdaCore/ada-traits-containers
https://sourceware.org/svn/gcc/tags/gcc_7_1_0_release/gcc/ada/

	Verified Implementation of the Bounded List Container with VeriFast

