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This deliverable presents the decision procedures developed inside the VECOLIB project for dif-
ferent fragments of Separation Logic.

The first procedure, implemented in the SLIDE solver, decides the validity of an entailment be-
tween formulas in a fragment of Separation Logic with Inductive Definitions (SLID). This fragment
is very expressive and covers interesting data structures (lists, trees, trees with parent references). It
proceeds by reduction to the inclusion problem in tree automata. The procedure is implemented in the
solver SLIDE.

The second procedure, implemented in the SPEN solver, soundly decides (it is not complete) the
validity of the entailment between formulas in SLID extended with data. For the fragment without
data, the procedure proceeds by reduction to the membership problem in tree automata. It is able to
deal with inductive definitions for list-like data structures (nested lists, skip lists, etc.) For the fragment
with data, the procedure proceeds by proof search using a set of lemmas automatically generated from
the inductive definition. Both procedures are implemented in the solver SPEN.

Finally, we describe a DPLL-based SMT solver for the quantifier-free fragment of Separation
Logic with data and without inductive definitions. This procedure is based on a translation of SL
to multi-sorted first-order logic with bounded quantifiers over sets and uninterpreted functions. We
deal with the quantifiers in an effective way, by a counterexample-driven instantiation algorithm. We
implemented the algorithm as a branch of the CVC4 SMT solver.

We first provide an overview of the logic fragments considered and the related works on the exist-
ing decision procedures.
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1 Preliminaries and Related Works

Separation Logic (SL) [19, 22] is an established approach for the specification of complex, unbounded
size data structures that are used in the implementation of containers. It is used by several verifica-
tion and analysis tools, e.g., SmallFoot [26], MemCAD/Xisa [8], Infer [6], Celia [2], Sleek/Hip [9],
Verifast [17]. This success is due to its support for local reasoning based on the “frame rule” which
leads to compact proofs and scalable analyses. Typically, SL is used in combination with inductive
definitions, which provide a natural description of the data structures manipulated in containers, e.g.,
lists, trees. Moreover, it can be extended to specify low level code data structures [7].

Inside the VECOLIB project, we developed two solvers for SL: SLIDE [16] and SPEN [11, 12].
These decision procedures are or should be used in the tools developed inside the project for the
verification of containers.

In this section, we first fix a logic fragment of SL which subsumes the fragments considered by
both solvers. Then, we provide an overview of the existing solvers developed for SL.

1.1 Separation Logic with inductive definitions

Let LVar be a set of location variables, interpreted as heap locations, and DVar a set of data variables,
interpreted as data values stored in the heap, (multi)sets of values, etc. In addition, let Var = LVar∪
DVar. The domain of heap locations is denoted by L while the domain of data values stored in the
heap is generically denoted by D. Let F be a set of pointer fields, interpreted as functions L⇀ L, and
D a set of data fields, interpreted as functions L⇀ D. The syntax of the Separation Logic fragment
we considered is defined in Tab. 1.

Formulas are interpreted over pairs (s,h) formed of a stack s and a heap h. The stack s is a function
giving values to a finite set of variables (location or data variables) while the heap h is a function
mapping a finite set of pairs (`,pf ), where ` is a location and pf is a pointer field, to locations, and a
finite set of pairs (`,df ), where df is a data field, to values in D. In addition, h satisfies the condition
that for each ` ∈ L, if (`,df ) ∈ dom(h) for some df ∈D , then (`,pf ) ∈ dom(h) for some pf ∈ F . Let
dom(h) denote the domain of h, and ldom(h) denote the set of ` ∈ L such that (`,pf ) ∈ dom(h) for
some pf ∈ F .

Formulas are conjunctions between a pure formula Π and a spatial formula Σ. Pure formulas
characterize the stack s using (dis)equalities between location variables, e.g., a stack models x = y iff
s(x) = s(y), and constraints ∆ over data variables. We let ∆ unspecified, though we assume that they
belong to decidable theories, e.g., linear arithmetic or quantifier-free first order theories over multisets
of values. The atom emp of spatial formulas holds iff the domain of the heap is empty. The points-to
atom E 7→ {( fi,xi)}i∈I specifies that the heap contains exactly one location E, and for all i ∈ I , the
field fi of E equals xi, i.e., h(s(E), fi) = s(xi). The predicate atom P(E,~F) specifies a heap segment
rooted at E and shaped by the predicate P; the fragment is parameterized by a set P of inductively
defined predicates, formally defined hereafter.

Let P ∈ P . An inductive definition of P is a finite set of rules of the form P(E,~F) ::= ∃~Z.Π∧Σ,
where ~Z ∈ Var∗ is a tuple of variables. A rule R is called a base rule if Σ contains no predicate atoms.
Otherwise, it is called an inductive rule.

1.2 Existing solvers for Separation Logic

Several teams are developing SL solvers for different fragments included in the one presented above.
Some of these solvers, including SLIDE and SPEN, have participated to competition of SL-COMP’14
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Table 1: The syntax of the Separation Logic fragment

X ,Y,E ∈ LVar location variables ρ ⊆ (F ×LVar)∪ (D×DVar)

~F ∈ Var∗ vector of variables P ∈ P predicates
x ∈ Var variable ∆ formula over data variables

Π ::= X = Y | X 6= Y | ∆ |Π∧Π pure formulas
Σ ::= emp | E 7→ ρ | P(E,~F) | Σ∗Σ spatial formulas

ϕ ::= Π∧Σ | ϕ∨ϕ | ∃x. ϕ formulas

[23], organized after the model and with the help of the SMT-COMP, the competition of solvers on
SAT modulo theory.
ASTERIX [20]: is developed by Juan Navarro Perez (UCL, UK) and Andrey Rybalchenko (Microsoft
Research Cambridge, UK). The solver deals with the satisfiability and entailment checking in the SL
fragment using only ls predicate. For this, it implements a model-based approach. The procedure
relies on SMT solving technology (Z3 solver is used) to untangle potential aliasing between program
variables. It has at its core a matching function that checks whether a concrete valuation is a model of
the input formula and, if so, generalizes it to a larger class of models where the formula is also valid.

SeLoger [14]: is developed by Christophe Hasse (LSV, France). The solver deals with the satisfiability
and entailment checking in the SL fragment using only ls predicate. Is uses a special procedure based
on searching paths in graphs to untangle potential aliasing between program variables.

CYCLIST-SL [5, 10]: is developed by James Brotherston and Nikos Gorogiannis (Middlesex Univer-
sity London, UK). The solver deals with the entailment checking for the SL fragment without data.
It is an instantiation of the theorem prover CYCLIST for the case of Separation Logic with inductive
definitions. The solver builds derivation trees and uses induction to cut infinite paths in these trees
that satisfy some soundness condition. For the Separation Logic, CYCLIST-SL replaces the rule of
weakening used in first-order theorem provers with the frame rule of SL.

SLEEK [9, 24]: is developed in the team of Wei Ngan Chin (NUS, Singapore). The solver deals
with the satisfiability and entailment checking for SL formulas in the fragment we presented. It is an
(incomplete but) automatic prover, that builds a proof tree for the input problem by using the classical
inference rules and the frame rule of SL. It also uses a database of lemmas for the inductive definitions
in order to discharge the proof obligations on the spatial formulas. The proof obligations on pure
formulas are discharged by external provers like CVC4, Mona, or Z3.

SLSAT [4]: is developed by James Brotherston, Nikos Gorogiannis (Middlesex University London,
UK), and Juan Navarro Perez (UCL, UK). The solver deals with the satisfiability problem for the SL
fragment without data but with general inductively defined predicates. The decision procedure is based
on a fixed point computation of a constraint, called the “base” of an inductive predicate definition. This
constraint is a conjunction of equalities and dis-equalities between a set of free variables built also by
the fixed point computation from the set of inductive definitions.

GRASShopper [21] is developed by Ruzica Piskac, Thomas Wies, and Damien Zufferey (NYU, USA).
The solver deals with the satisfiability and entailment problem for the SL fragment with data but
mainly list and trees predicates. The decision procedure is based on the translation of the problem into
a equi-satisfiable problem in the theory of sets and the the application of existing solvers for the set
theory.
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Table 2: Examples of inductive definitions without data

singly linked lists

ls(E,F) ::= (E = F ∧ emp) (1)
::= (E 6= F ∧∃X .E 7→ {(nxt,X)} ∗ ls(X ,F)) (2)

nested linked lists

nll(E,F,B) ::= (E = F ∧ emp) (3)
::= (E 6= F ∧E 6= B∧∃X ,Z. E 7→ {(nxtup,X),(inner,Z)} ∗

ls(Z,B) ∗ nll(X ,F,B))
(4)

doubly linked lists

dll(E,L,P,F) ::= (E = F ∧L = P∧ emp) (5)
::=

(
E 6= F ∧L 6= P∧∃X .E 7→ {(nxt,X),(prv,P)} ∗ dll(X ,L,E,F)

)
(6)

binary tree

btree(E) ::= (E = nil∧ emp) (7)
::=

(
E 6= nil∧∃X ,Y. E 7→ {(lson,X),(rson,Y )} ∗

btree(X) ∗ btree(Y )
) (8)

tree with linked leaves

tll(R,P,E,F) ::= (R = E ∧R 7→ {(lson,nil),(rson,nil),(parent,P),(nxt,F)}) (9)
::=

(
R 6= E ∧∃X ,Y,Z. R 7→ {(lson,X),(rson,Y ),(parent,P),(nxt,Z)}

∗ tll(X ,R,E,Z) ∗ tll(Y,R,Z,F)
) (10)

Table 3: Examples of inductive definitions with data

binary search tree

bst(E,M) ::= E = nil∧M = /0∧ emp (11)
bst(E,M) ::= ∃X ,Y,M1,M2,v.E 7→ {(lson,X),(rson,Y ),(data,v)} (12)

∗ bst(X ,M1)∗bst(Y,M2)

∧ M = {v}∪M1∪M2∧M1 < v < M2

(13)
binary search tree with a hole

bsthole(E,M1,F,M2) ::= E = F ∧M1 = M2∧ emp (14)
bsthole(E,M1,F,M2) ::= ∃X ,Y,M3,M4,v.E 7→ {(lson,X),(rson,Y ),(data,v)}

∗ bst(X ,M3)∗bsthole(Y,M4,F,M2) (15)
∧ M1 = {v}∪M3∪M4∧M3 < v < M4

bsthole(E,M1,F,M2) ::= ∃X ,Y,M3,M4,v.E 7→ {(lson,X),(rson,Y ),(data,v)}
∗ bsthole(X ,M3,F,M2)∗bst(Y,M4) (16)
∧ M1 = {v}∪M3∪M4∧M3 < v < M4
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2 SLIDE Solver

SLIDE [16, 25]: developed by Adam Rogalewicz and Tomas Vojnar (VeriFIT, Czech Rep) and Radu
Iosif (Verimag, France). The solver deals with the entailment problem in the decidable sub-fragment
of SL without data constraints defined in [15]. The decision method implemented in SLIDE be-
longs to the class of automata-theoretic decision techniques. We translate an entailment problem
ϕ |= ψ into a language inclusion problem L(Aϕ) ⊆ L(Aψ) for tree automata (TA) Aϕ and Aψ that
(roughly speaking) encode the sets of models of ϕ and ψ, respectively. Yet, a naı̈ve translation
of the inductive definitions of SL into TA encounters a polymorphic representation problem: the
same set of structures can be defined in several different ways, and TA simply mirroring the def-
inition will not report the entailment. For example, DLLs with selectors next and prev for the
next and previous nodes, respectively, can be described by a forward unfolding of the inductive def-
inition: DLL(head, prev, tail,next) ≡ ∃x. head 7→ (x, prev) ∗ DLL(x,head, tail,next) | emp∧ head =
tail∧ prev= next, as well as by a backward unfolding of the definition: DLLrev(head, prev, tail,next)≡
∃x. tail 7→ (next,x)∗DLLrev(head, prev,x, tail) | emp∧head = tail∧ prev = next. Also, one can define
a DLL starting with a node in the middle and unfolding backward to the left of this node and forward
to the right: DLLmid(head, prev, tail,next)≡ ∃x,y,z . DLL(y,x, tail,next)∗DLLrev(head, prev,z,x). The
circular entailment: DLL(a,b,c,d) |= DLLrev(a,b,c,d) |= DLLmid(a,b,c,d) |= DLL(a,b,c,d) holds, but
a naı̈ve structural translation to TA might not detect this fact. To bridge this gap, we define a closure
operation on TA, called canonical rotation, which adds all possible representations of a given induc-
tive definition, encoded as a tree automaton.

The translation from SL to TA provides also tight complexity bounds, showing that entailment
in the local fragment of SL with inductive definitions is EXPTIME-complete. Moreover, we imple-
mented our method using the VATA [18] tree automata library, which leverages from recent advances
in non-deterministic language inclusion for TA [3], and obtained quite encouraging experimental re-
sults.

3 SPEN Solver

SPEN [11, 27]: developed by Constantin Enea and Mihaela Sighireanu (UPD & CNRS, France), Ondra
Lengal and Tomas Vojnar (VeriFIT, Czech Rep). The solver deals with satisfiability and entailment
problems for the fragment SL with special form of ID and data constraints. The decision procedures
calls the MiniSAT solver on a boolean abstraction of the SL formulas to check their satisfiability and to
“normalize” the formulas by inferring its implicit (dis)equalities. The core of the algorithm checking
if ϕ⇒ ψ is valid searches a mapping from the atoms of ψ to sub-formulas of ϕ. This search uses the
membership test in tree automata to recognize in sub-formulas of ϕ some unfolding of the inductive
definitions used in ψ.

In 2015, this solver has been extended to allow more general inductive definitions (including
trees) combined with data constraints [12]. The inductive definitions should belong to a class formally
defined in [12] that (i) supports simple lemmas and (ii) allows to automatically synthesize these
lemmas using efficiently checkable, almost syntactic, criteria. The solver is based on a proof strategy
using the lemmas generated from the inductive definitions. The proof strategy is based on simple
syntactic matchings of spatial atoms (points-to atoms or predicate atoms like bsthole) and reductions
to SMT solvers for dealing with the data constraints. We shown experimentally that this proof strategy
is powerful enough to deal with sophisticated benchmarks, e.g., the verification conditions generated
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from the iterative procedures for searching, inserting, or deleting elements in binary search trees,
red-black trees, and AVL trees, in a very efficient way.

4 CVC4-SL Solver

We present a decision procedure for quantifier-free SL which is entirely parameterized by a base theory
T of heap locations and data, i.e. the sorts of memory addresses and their contents can be chosen from
a large variety of available theories handled by Satisfiability Modulo Theories (SMT) solvers, such as
linear integer (real) arithmetic, strings, sets, uninterpreted functions, etc. Given a base theory T , we
call SL(T ) the set of separation logic formulae built on top of T , by considering points-to predicates
and the separation logic connectives. Applications of our procedure include:
- Integration with more sophisticated theorem provers for separation logic with inductive predicates.

Currently, such solvers concentrate on aspects related to applying induction efficiently and apply
heavy restrictions on the ground fragment of the logic considered (typically only separating con-
junctions combined with very restricted data theories).

- Use as back-end of a bounded model checker for programs with pointer and data manipulations,
based on a complete weakest pre-condition calculus that involves the magic wand connective.

As main contribution, we show that quantifier-free SL(T ) is decidable, provided that the quantifier-
free fragment of the base theory T is decidable. Our method is based on a semantics-preserving trans-
lation of SL(T ) into first-order T formulae with quantifiers over a domain of sets, whose cardinality
is bound by the size of the input formula. For the fragment of T formulae produced by the translation
from SL(T ), we developped a lazy quantifier instantiation method, based on counterexample-driven
refinement. We show that the quantifier instantiation algorithm is sound complete and terminates on
the fragment under consideration. We present our algorithm for the satisfiability of quantifier-free
SL(T ) logics as a component of a DPLL(T ) architecture [13], which is widely used by modern SMT
solvers. We have implemented a prototype solver as a branch of the CVC4 SMT solver [1] and carried
out experiments that handle non-trivial examples quite effectively.
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[4] J. Brotherston, C. Fuhs, J. A. N. Pérez, and N. Gorogiannis. A decision procedure for satis-
fiability in separation logic with inductive predicates. In CSL-LICS, pages 25:1–25:10. ACM,
2014.

[5] J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem prover. In APLAS,
volume 7705 of LNCS, pages 350–367. Springer, 2012.

6



[6] C. Calcagno and D. Distefano. Infer: An automatic program verifier for memory safety of c
programs. In NASA FM, volume 6617 of LNCS, pages 459–465. Springer, 2011.

[7] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Beyond reachability: Shape abstraction
in the presence of pointer arithmetic. In SAS, volume 4134 of LNCS, pages 182–203. Springer,
2006.

[8] B.-Y. Chang and X. Rival. Relational inductive shape analysis. In POPL’08, pages 247–260.
ACM, 2008.

[9] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape, size and bag
properties via user-defined predicates in separation logic. Sci. Comput. Program., 77(9):1006–
1036, 2012.

[10] CYCLIST. https://github.com/ngorogiannis/cyclist.

[11] C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional entailment checking for a
fragment of separation logic. In APLAS, volume 8858 of LNCS, pages 314–333. Springer, 2014.

[12] C. Enea, M. Sighireanu, and Z. Wu. Automated Technology for Verification and Analysis: 13th
International Symposium, ATVA 2015, Shanghai, China, October 12-15, 2015, Proceedings,
chapter On Automated Lemma Generation for Separation Logic with Inductive Definitions,
pages 80–96. Springer International Publishing, Cham, 2015.

[13] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Dpll (t): Fast decision
procedures. In Computer aided verification, pages 175–188. Springer, 2004.

[14] C. Haase, S. Ishtiaq, J. Ouaknine, and M. J. Parkinson. SeLoger: A tool for graph-based reason-
ing in separation logic. In CAV, volume 8044 of LNCS, pages 790–795. Springer, 2013.
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