
Logical Tools for the Refinement Relations

Deliverable D3-1

ANR project VECOLIB

March 2017, last revision August 2017

Abstract

This report surveys logic based formalisms used to specify the re-
finement relations between mathematical structures implemented by
container libraries and the data structures used in these implementa-
tions. We propose a solution based on the combination of logic theories
over inductive data types and Separation Logic. For this solution, the
report surveys the existing tools (solvers, provers) developed to verify
such specifications, and therefore check the refinement relations.

1 Motivation

One of the main goals of the standard libraries for containers is to provide
efficient implementations for common mathematical structures such as sets,
multisets, sequences, and partial functions. To abstract the details of these
implementations, modern programming languages propose generic interfaces
to data containers. In general, these interfaces are informally specified in
terms of well known operations on the mathematical structures represented.

Few standard libraries provide a formal specification of its containers.
Notable exceptions are, e.g., Eiffel [10] and Spark [4] which use first
order logic over theories of sets and sequences. Recently, [2] provided a
specification of Ada 2012 standard library using first order logic over user
defined algebraic data types. Also, an ongoing project tries to provide a fully
specified and verified implementation of Ocaml container library in Coq.
Formal specifications are very important when the library uses constructs
that exceed the scope of the mathematical structure. For example, iterators
in Java are generic and they exist outside the container, while they are part
of the container in Ada.

1

In order to reason about the correctness of container implementations
with respect to their abstract specifications, it is necessary to consider logic-
based formalisms that allow to mix the high level logics used to specify the
container interface and the low level logics used to specify the implementa-
tion. For example, let us consider the simplified case of a mixed specification
ϕH⊕ϕL of the post-condition of a container operation, where ϕH is the high
level specification of the postcondition, ϕL is the low level one, and some
logic operation ⊕ is used to compose them. To show that the operation
implementation is correct, one has to prove that the ϕL is valid in the final
state of this operation. To prove the interface specification of the operation,
one has to prove that ϕH implies the post-condition of the operation. This
solution is employed by approaches for refinement specification where the
high level and the low level logics are the same, e.g., second order logic on
sets in B [1]. However, such approaches are efficient for programs using sim-
ple data structures but are less scalable for pointer manipulating programs.

Because our tools for the lower level are based on Separation Logic,
we cannot take a uniform approach as above, because Separation Logic is
not well adapted for high level specification. In the Vecolib proposal, we
sketch out a solution based on an explicit refinement relation α linking the
high level and low level, as follows. Consider for instance an implemen-
tation of sets which uses acyclic singly linked lists. The refinement rela-
tion α should specify that for any set variable s, there is a unique acyclic
list segment in the heap, i.e., a list segment between some memory loca-
tion labeled by the head variable S and nil. If the lower level logic is the
Separation Logic with an inductive definition of the list segment predicate
ls, we may write α(S, s) ∧ ls(S, nil). The refinement relation shall also
link the abstract terms to the implementation of abstract operations, e.g.
(α(S, s) ∧R = add(x, S))⇒ α(R,Add(x, s)), where add is the implementa-
tion of abstract data type operation Add.

The study of several existing approaches for specifying container li-
braries [10, 5] turned us to a solution where the refinement relation is not
explicit, but included in the inductive definition of the data structure in
Separation Logic.

This report is organised as follows. Section 2 surveys the existing ap-
proaches for specifying container libraries and for mixing Separation Logic
with high level theories. Section 3 defines a preliminary solution we used to
verify a container library. Section 4 surveys the tools available or required
by the solution we proposed.

2

2 Specification of Container Libraries

2.1 Eiffel Container Library

The first successful experience in proving a full container library has been
reported in 2015 by Polikarpova et al [] for Eiffel. The choice of Eiffel
is not surprising because the programming language has been designed with
the principle of programming by contracts, and therefore it ease the speci-
fication process. However, the heap manipulation in Eiffel is simpler due
to its object oriented design principle and voids pointer arithmetics. This
simplifies the reasoning about the heap.

The experience does a complete verification of a realistic container li-
brary, called EiffelBase2, against full functional specifications. The library,
consists of over 8, 000 lines of Eiffel code in 46 classes, and offers arrays,
lists, stacks, queues, sets, and dictionaries. The interface specifications are
written in first-order logic and characterize the abstract object state using
mathematical entities, such as sets and sequences.

To specify the refinement relation, each class in Eiffel declares its ab-
stract state through a set of model attributes. For example, the model of the
class LINKED_LIST is a sequence of list elements (of generic type E), denoted
by an attribute (field) of the class as follows:

class LINKED_LIST[E]

model sequence

feature [public]

ghost sequence: MML_SEQUENCE[E]

feature [private]

first_cell: LINKABLE [G]

last_cell: LINKABLE [G]

ghost cells: MML_SEQUENCE [LINKABLE [G]]

...

The sequence type MML_SEQUENCE is provided by a specific Eiffel library,
called the Mathematical Model Library (MML). The instances of MML
model classes are mathematical values that are mapped to the corresponding
logical representations in the underlying prover. The interface view of the
class is a sequence of elements, denoted by the public attribute sequence.
The link between the data structure used, i.e., a linked list starting from
first_cell and ending in end_cell, and the model sequence is defined by
the private attribute cells that stores the sequence of references (interface
LINKABLE) to cells. The update of the model is preceded by the update of

3

the internal model representation, like below for the push_back operation
for a value v:

cells := cells + <cell>

sequence := sequence + <v>

where cell is the new cell allocated to store v.
The verification conditions generated from the Eiffel contracts of the

container implementation are checked by a prover, AutoProof, that is de-
signed to deal with the objects in MML. The prover has been significantly
extended to deal with this case study, mainly with new theories and lemmas
that ease the interactive proof.

2.2 Ada Container Library

The contract-based programming style has been added in Ada 2012 stan-
dard. This make possible the translation in Ada of the specifications for
the standard container libraries, which where only written for Spark (the
formal, non standard version of Ada) as described in [4]. The translation,
done at AdaCore during the Vecolib project, lead to a new formal specified
library of containers published in July 2017 [2].

For each container, the Ada specification is given as:

• a mapping M from a container type to a model type, which is a func-
tional implementation of the container; model types are provided for
sequences, sets and maps;

• for each container operation o, a contract (preo, posto) in the form of
a pre/post condition using predicates and operations over the model
type and the container type.

The specification also includes the specification of container “cursors”, i.e.,
a data structure that allows to iterate over the elements of the container.

For example, for the container of bounded doubly linked lists, the model
mapping M maps the container type into the sequence of its elements. Since
the container is implemented using an array, the model of its cursors maps
the positions in the list to indexes in the array.

An important feature of this specification is its executability. This feature
provides a mean to check by testing the implementation and the specification
but also to simplify the specification and the verification of the code using
the library.

4

The model mapping M can be seen as a refinement relation. To verify its
soundness, one has to check that all contract of operations provided over the
container are satisfied. This task is not trivial because it requires to verify
the implementation of the container. The specification of invariants for the
data structure used to implement the container and the loop invariants in
the operations are not provided.

During the Vecolib project, we consider the verification of the new li-
brary of containers as it is described in Section 3. This experience leads
us to the conclusion that, for the verification process, it is simpler to de-
compose the refinement relation M used in the Ada specification into two
relations: (i) a first relation mapping the container type to a mathematical
model that includes all the details of the implementation, also called the
concrete mode, and (ii) a mapping from the previous model to the container
model used in Ada specifications. For example, for the doubly linked lists
container, we use as concrete model a sequence of records storing the cells
of the list in the order given by the list (and not by the array storing the
list). The mapping from this concrete model to the sequence of elements is
inductively defined over sequences. This decomposition facilitates the proof
of correctness because it reduces the task of the low level solver and uses
the power of solvers dealing with mathematical theories, here the theory of
sequences of data.

2.3 Specifying Refinement with VeriFast in C

For C, the VeriFast [8] tool includes its ow specification language which al-
lows to specify precisely the organisation of heap fragments using inductive
predicates defined by Separation Logic formulas. In addition, VeriFast
provides means to combine these inductive predicates with polymorphic al-
gebraic data types, which is a feature very important for this work because
it can be used to specify the refinement relation.

Indeed, the invariants and the contracts of a container implementation
can be captured container contracts and infrom Ada, we have to follow
the approach of representation predicates introduced for SL by O’Hearn et
al. [9] and generalised in several works, e.g., [3]. It consists of relating heap
fragments with detailed algebraic models using inductive predicates. The
algebraic models are then constrained in the pure part of SL formulas, i.e.,
the part not constraining the heap.

For example, let us consider the VeriFast specification of a doubly
linked list of integers stored in the heap and related with the model of
sequences which is denoted by list in VeriFast:

5

predicate dll(struct Node_Type* iprev, struct Node_Type* ifrom,

struct Node_Type* ilast, struct Node_Type* ito;

list<int> values) =

ifrom==ito ?

(iprev==ilast &*& values==nil<int>)

: (malloc_block_Node_Type(ifrom) &*&

ifrom->prev|->iprev &*& ifrom->next|->?inext &*&

ifrom->elem|->?pelem &*&

dll(ifrom, inext, ilast, ito, ?vtl) &*&

values==cons(pelem, vtl));s

The type of the list is a record struct Node_Type with fields next, prev,
and elem for the links to next and previous elements of the list and the
integer element. The parameter values representing the algebraic model
is after the semi-colon, which means that it is computed (i.e., completely
fixed) by the inductive predicate from the first parameters. The construc-
tors of the algebraic model list are nil and cons. The variables quantified
existentially are prefixed by a query sign at their first occurrence in the for-
mula. To specify an acyclic doubly linked list ending in null with all elements
strictly positive, the formula includes the predicate above and constrains the
algebraic model by the predicate all_pos as follows:

dll(null, S, ?L, null; ?seq) &*& all_pos(seq)

where S and L are pointers to the start resp. last element of the list, and
the predicate all_pos is defined inductively by:

predicate all_post(list<int> s) =

switch(s) {

case nil: true;

case cons(?x, ?s0): x > 0 &*& all_pos(s0);

}

Another approach is for defining the refinement relation is to use the two
step approach: define a sequence of records Node_Type using the predicate
dll and then mapping this sequence to the sequence of integers representing
its elements using a inductive defined function, called fixpoint in VeriFast
specifications:

fixpoint list<int> values(list<Node_Type> s) =

switch(s) {

case nil: return nil<int>;

6

case cons(?r, ?s0): return cons((&r)->elem, values(s0));

}

This approach allows to relate the heap specification in SL with a very
precise algebraic model over C types. This model is used to extract several
abstractions of the list: the sequence of its values, the sequence of addresses
of cells stored in the list, etc.

From the experience we conducted with the verification of the refinement
relation for the container of doubly linked list (see next section), we conclude
that this last approach is the most promising one for the expressive power of
specifications and for the capabilities of logical tools, i.e., solvers or provers.

3 Verification of a Container Library

This section reports on the experience we conducted for the verification of
the refinement relation for a container library of bounded doubly linked lists
using VeriFast. A detailed report (paper submitted to VSTTE 2017) and
the sources of the library are available as appendixes of this report.

The library we consider is inspired by the GNAT [7] library for doubly
linked lists (DLL). It implements DLL with bounded capacity, dynamic
size, and fixed size of stored data (elements). The functional specification of
the Ada 2012 library is given by method contracts, written by Emmanuel
Briot and Claire Dross from AdaCore [2], using Spark 2014, the subset of
Ada which is designed for programming safety-critical applications. The
logic fragment used in these contracts is first order logic with algebraic data
types.

Because the tools for deductive verification in Ada or Spark do not (yet)
include the Separation Logic technology, we turn to C, or more precisely to
its subset supported by the verification environment VeriFast [8]. We have
coded in a subset of C the linked list container and translated its functional
specification in the logic fragment supported by VeriFast. This process
was possible because both the C programming language and the VeriFast
logic work at a lower level of abstraction than Ada. However, because of
differences between programming and specification languages involved, the
translation is not a routine (see the detailed report).

The specification is, like in Ada 2012 container, model based. This is
possible due to the features provided by VeriFast to define ghost algebraic
data types and representation predicates, i.e., inductive predicates on the
heap which compute abstract data type models.

7

In the following, we sketch up the container implementation and speci-
fication. Its implementation is very interesting because it combines an allo-
cator with a classic data structure for linked lists.

List cell Also called node in the following, the list cell encapsulates the
container element together with links to the next and previous cell in the
list. We assume that elements are integers. In Ada, the type of the element
is an abstract type, parameter of the library.

typedef int Element_Type;

struct Node_Type { int prev; int next; Element_Type elem; };

The predicate node specifies a node allocated on heap and its model as
follows:

inductive purenode = purenode(int , int , Element_Type);

predicate node(struct Node_Type* n, int capacity;

purenode pn) =

malloc_block_Node_Type(n) &*&

n->prev|->?iprev &*& n->next|->?inext &*&

n->elem|->?pelem &*&

inext >=0 &*& inext <= capacity &*&

pn== purenode(iprev , inext , pelem);

The inductive type purenode record the values of node fields. To specify that
the node at location n is allocated on the heap, we use the VeriFast pred-
icate malloc_block_Node_Type generated automatically at the definition of
the record Node_Type. The values stored by the record fields are introduced
(using question marks) by points-to atoms, e.g., n->elem|->?pelem. The
value stored in the next link is bounded by the parameter capacity. The
parameter pn is a computed parameter, i.e., deducible from the other param-
eters of the predicate. The constraints on the heap (also called spatial) and
on values (also called pure) are composed by the conjunction operator &*&

which represents both the separating conjunction and the logic conjunction.
There are two kinds of nodes: nodes occupied by list elements and nodes

not yet used in the list, i.e., free. Free nodes have the prev field at −1 and
the elem field is irrelevant. Occupied nodes have the prev field set to a non-
negative integer and the elem field is relevant. We define model functions
(introduced by fixpoint) and derived predicates using them to identify the
two kinds of nodes.

fixpoint bool is_free(purenode n) { return pprev(n)== -1; }

predicate free_node(struct Node_Type* n, int capacity;

8

int inext) =

node(n, capacity , ?pn) &*&

is_free(pn)== true &*& inext== pnext(pn);

fixpoint bool is_occupied(purenode n) { return pprev(n)>=0; }

predicate occupied_node(struct Node_Type* n, int capacity;

purenode pn) =

node(n, capacity , pn) &*& is_occupied(pn)== true;

Acyclic doubly linked list The container stores the doubly linked list
(DLL) in an array of fixed capacity, which is given at the container creation.
The number of elements stored in the list can not exceed the container
capacity. The nodes of the DLL are stored starting from the index 1; index
0 plays the role of the null reference. Therefore, type of the list container is
given by the following record:

struct List {

int capacity; struct Node_Type * nodes; int size;

int free; int first; int last;

};

Cells at the extremity of the lists are stored at indexes first resp. last.
The representation predicate of the list of occupied nodes is defined

classically as a list segment starting at node ifrom, ending at node ilast

and linked with the previous node iprev and the following node ito:

predicate dll(struct Node_Type * tab , int capacity ,

int iprev , int ifrom , int ilast , int ito;

list <purenode > values) =

ifrom ==ito ?

(iprev ==ilast &*& values ==nil <purenode >)

: (occupied_node(tab+ifrom , capacity , ?p) &*&

pprev(p)== iprev &*&

dll(tab , capacity , ifrom , pnext(p), ilast , ito , ?vtl) &*&

values ==cons(p, vtl));

where pprev, pnext, and pelem return the previous, next, resp. element
component of a purenode value. This form of the predicate for acyclic DLLs
has good properties and eases the generation of lemmas for composition of
list segments required to prove code doing list traversal [6, 3].

Acyclic list of free nodes The free nodes are organized in a singly linked
list, called the free-list. The start of this list is given by the field free as
follows: if free is negative, the list is built from all nodes stored between

9

−free and capacity; otherwise, the list starts at index free and uses as
successor relation the next field of nodes. Figure ?? illustrates the two
kinds of a free list. The first kind of free list is used to obtain a fast method
to initialize the nodes in the free-list (mainly next fields, all set to 0) at the
DLL initialization.

The representation predicates of the two kinds of free-lists define the
model of free-list as the sequence of indexes of free nodes:

predicate uninit_free(struct Node_Type* tab , int capacity ,

int ifrom , int ito; list <int > model) =

ifrom ==ito ? model ==nil

: (ifrom <ito &*& free_node(tab+ifrom , capacity , 0) &*&

uninit_free(tab , capacity , ifrom+1, ito , ?mtl) &*&

model ==cons(ifrom , mtl));

predicate init_free(struct Node_Type* tab , int capacity ,

int ifrom , int ito; list <int > model) =

ifrom ==ito ? model ==nil

: (ifrom >0 &*& free_node(tab+ifrom , capacity , ?inext) &*&

init_free(tab , capacity , inext , ito , ?mtl) &*&

model ==cons(ifrom , mtl));

We choose a uniform shape for these predicates as list segments in order to
exploit the lemmas satisfied by such predicates [6, 3] for (de)composition of
list segments. The two kinds of free-list are combined in a predicate that
instantiates the correct predicate depending on the sign of free.

predicate free_nodes(struct Node_Type* tab , int cap ,

int free , int size; list <int > fmodel) =

free >=0 ? (init_free(tab , cap , free , 0, ?M) &*&

fmodel ==M &*& length(M)+size==cap)

: (uninit_free(tab , cap , abs(free), cap+1, ?M) &*&

fmodel ==M &*& length(M)+size==cap);

Representation predicate The invariants of the container are specified
by the following predicate:

predicate list(struct List* L;

struct Node_Type* tab , int cap ,

int free , list <int > free_model ,

int head , int last , list <purenode > vs) =

malloc_block_List(L) &*&

L->nodes|->tab &*& L->capacity|->cap &*& cap > 0 &*&

malloc_block(tab , sizeof(struct Node_Type)*(cap +1)) &*&

node(tab , cap , purenode(-1,0,_)) &*&

10

L->first|->head &*& head >=0 &*& head <=cap &*&

L->last|->last &*& last >=0 &*&

dll(tab ,cap ,0,head ,last ,0,vs) &*& L->size|->length(vs) &*&

L->free|->free &*& free <=cap &*&

free_nodes(tab ,free ,length(vs),cap ,free_model);

The predicate specifies that the container is allocated on the heap, and its
field tab is also allocated as a block containing capacity+1 records of type
Node_Type. The first node of this array (at address tab) has its link fields
at -1 and 0. The remaining nodes are split between the dll and free_nodes

predicates due to the separating conjunction. The size of the DLL is exactly
the one of its model and stored in the field size.

In VeriFast, allocated blocks are implicitly translated as arrays of bytes
(predicate chars). To access the i-th node of nodes inside the block allocated
for it, we introduce an axiom that intuitively says that if an array of chars
at address tab+i is not empty, we can split it such that we identify a node
at its start:

lemma void open_malloc_block(struct Node_Type* tab ,

int i, int len)

requires len > 0 &*&

chars((void *)(tab+i),len*sizeof(struct Node_Type),_) ;

ensures malloc_block_Node_Type (?n) &*& n == tab+i &*&

n->prev|-> _ &*& n->next|-> _ &*& n->elem|-> _ &*&

chars((void *)(tab+i+1),(len -1)* sizeof(struct Node_Type),_);

{ assume(false); }

Examples of function contracts The contract of the constructor of the
list provides the default values for the fields of the container:

struct List* List(int capacity);

//@ requires capacity > 0;

//@ ensures list(result, ?tab, capacity, -1, _, 0, 0, nil);

The contract for the list equality test illustrates how the precise model
(variables mL and mR) is used to extract the sequence of values by the logic
function model:

bool is_equal(struct List* L, struct List* R);

/*@ requires list(L, ?tL, ?cL, ?fL, ?fmL, ?hL, ?lL, ?mL) &*&

list(R, ?tR, ?cR, ?fR, ?fmR, ?hR, ?lR, ?mR); @*/

/*@ ensures list(L, tL, cL, fL, fmL, hL, lL, mL) &*&

list(R, tR, cR, fR, fmR, hR, lR, mR) &*&

result == (model(mL) == model(mR)); @*/

11

For some methods, the contract we specify is more precise than in Ada
due to the lack of encapsulation of container fields. For example, for the
method clear, the Ada contract specifies only that, at the end of the
method, the list has an empty model. In our contract, the values of fields
for list head and tail are constrained.

void clear(struct List* L);

//@ requires list(L, ?t, ?c, ?f, ?fm, ?h, ?l, ?m);

//@ ensures list(L, t, c, ?f1, ?fm1, 0, 0, m1) &*& length(m1)==0;

Experimental results: We have coded, specified, and verified 22 main
methods from the 30 provided by the container library including equality and
emptiness tests, clear, assign and copy, getting and setting one element, ma-
nipulating the cursors, inserting and deleting at some cursor, finding an ele-
ment before and after a cursor. The size of our development is given below.

Table 1: Statistics on the proof
File #pred #fix- #lemma lines

points annot code

vflist.gh 2 7 8 177 –

vfseq.gh 14 10 17 355 –

vfmap.gh 12 3 2 185 –

cfdlli.h 0 4 0 319 45

cfdlli.c 16 4 40 1473 385

Total 42 28 67 2524 430

To obtain a specifica-
tion close to the Ada
one, we wrote two files
of logic definitions for
models (vfseq.gh and
vfmap.gh) extending the
VeriFast libraries. Ad-
ditional fixpoint functions
and lemmas required on
VeriFast lists are writ-
ten in file vflist.gh.
The rate between source code and annotations is about 1 for 6; in Ada,
the rate between source code and contracts is already of about 1 for 3.

When specifying the private functions for node (de)allocation (specifica-
tions not provided in Ada), we obtain very big contracts of nearly 20 atoms,
because these methods break the invariant of the container. However, they
are both used with code such that the sequence of these calls restore the
container invariant. Collapsing of these methods may reduce the size of
annotations.

The choice of a precise model for the specification of the container has
two main advantages: it facilitated the writing of lemma for composition
of list segments and it allowed to manipulate several abstractions of the
container, including the sequence of values stored, the map of valid cursors,
and the container size. All these abstractions are catamorphisms on the
precise model, so easy to be defined with VeriFast fix-points and enabling

12

efficient decision procedures [11].
In conclusion, VeriFast provided us all the tools required to specify

and verify this library. We encountered some troubles with the use of arrays
of records, solved by pointer arithmetics and the axiom discussed in the pre-
vious section. We found very pleasant the application of automatic lemmas,
which discharged most of the inductive reasoning on lists and arithmetics.
We got around the absence of contract cases by using conditional expres-
sions and by expressing the relation between old and new values through
the precise model.

4 Logical Tools

The conclusion of this study is that a logic specification for the refinement
relation suitable for container libraries implemented in heap-manipulating
languages should satisfy the following requirements:

• include ghost specifications allowing to mix C types and algebraic data
types,

• include means to specify lemmas and additional functions or predicates
used to map concrete models to abstract models,

• include the Separation Logic theory with the ability of defining induc-
tive predicates mixing SL with algebraic data types.

The specification language of VeriFast satisfies these requirements.
The expressive power of the logic specification is balanced by the unde-

cidability of the logic theories involved as discussed in our previous reports.
To obtain automatic tools for the verification of the refinement relation, we
are working on sound procedures for the satisfiability and entailment prob-
lems in the theory of SL combined with algebraic or abstract data types.
An example of such work is the procedure proposed in [6] for the theory of
SL combined with multi-set contraints.

References

[1] J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and in-
stantiation of discrete models: Application to Event-B. Fundamenta
Informaticae, 77(1-2):1–28, 2007.

13

[2] E. Briot and C. Dross. Generic Ada library for algorithms and contain-
ers. Github project, 2017. Available online at https://github.com/

AdaCore/ada-traits-containers.

[3] A. Charguéraud. Higher-order representation predicates in separation
logic. In Proceedings of CPP, pages 3–14. ACM, 2016.

[4] C. Dross, J. Filliâtre, and Y. Moy. Correct code containing containers.
In TAP, volume 6706 of LNCS, pages 102–118. Springer, 2011.

[5] C. Dross and Y. Moy. Abstract software specifications and automatic
proof of refinement. In Proceedings of RSSRail, volume 9707 of Lecture
Notes in Computer Science, pages 215–230. Springer, 2016.

[6] C. Enea, M. Sighireanu, and Z. Wu. On automated lemma generation
for separation logic with inductive definitions. In ATVA, volume 9364
of LNCS, pages 80–96. Springer, 2015.

[7] GNU Fundation. GNAT library components in gcc 7.1. Available at
https://sourceware.org/svn/gcc/tags/gcc_7_1_0_release/gcc/

ada/ files a-cfdlli.ad*.

[8] B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast
program verifier. In K. Ueda, editor, Proceedings of APLAS, volume
6461 of LNCS, pages 304–311. Springer, 2010.

[9] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and informa-
tion hiding. In Proceedings of POPL, pages 268–280. ACM, 2004.

[10] N. Polikarpova, J. Tschannen, and C. A. Furia. A fully verified con-
tainer library. In Proceedings of FM, volume 9109 of Lecture Notes in
Computer Science, pages 414–434. Springer, 2015.

[11] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic
data types with abstractions. In POPL, pages 199–210. ACM, 2010.

14

https://github.com/AdaCore/ada-traits-containers
https://github.com/AdaCore/ada-traits-containers
https://sourceware.org/svn/gcc/tags/gcc_7_1_0_release/gcc/ada/
https://sourceware.org/svn/gcc/tags/gcc_7_1_0_release/gcc/ada/

	Motivation
	Specification of Container Libraries
	Eiffel Container Library
	Ada Container Library
	Specifying Refinement with VeriFast in C

	Verification of a Container Library
	Logical Tools

