
Deciding Set and Multi-set Constraints

Etienne Toussaint

Abstract

Set and multi-set constraints are very common in specification of data
structures such as arrays or binary search trees. Then, to verify the cor-
rectness of the implementation of such data structures, the verification
tools need decision procedures for checking the satisfiability of such con-
straints. This report provides a survey of the existing decision procedures
for the constraints over set and multi-set of integers. Moreover, it reports
on an implementation of such decision procedure on the top of existing
solvers for arithmetical constraints.

Keywords: Set and multi-set constraints; decision procedures; SMT solvers

1 Introduction

Multi-set (aka bag) constraints are very useful for the specification of constraints
over data structures. For example, the inductive definition of a binary search
tree storing integer values rooted at E and having the multi-set of values M is
specified by the following inductive definition in Separation Logic:

bst(E,M) ::= E = nil ∧M = JK (1)

bst(E,M) ::= ∃L,R, d. E 7→ {(left, L), (right, R), (data, d)} (2)

? bst(L,ML) ? bst(R,MR)

∧ E 6= nil ∧ML ≤ JdK < MR ∧M = ML ⊕ JdK⊕MR

The first equation specifies the case of an empty tree, where the root E is null
and the parameter M is an empty bag. The second equation specifies a non null
node at location E where the fields left, right, and data contain as values L,
R, resp. d (atom E 7→ {(left, L), (right, R), (data, d)}). The locations L and
R are roots of binary search trees of values in ML resp. MR (atoms bst(L,ML)
resp. bst(R,MR)), disjoint pairwise and from the node at E (due to the use of
the separation conjunction ?). The constraint between the multi-sets of values
and the value d, ML ≤ JdK < MR, specifies that all values in the left sub-tree
are less than d and d is strictly less than all values in the right sub-tree.

This report provides a detailed presentation of two decision procedures for
checking satisfiability of quantifier-free formulas including linear integer con-
straints and constraints over multi-sets of integers. The multi-set constraints

1

2 LOGIC QFBILIA 2

include classical atoms, like multi-set inclusion or membership, as well as con-
straints ordering multi-sets with respect to their elements or constraining the
minimum or maximum of a multi-set.

The decision procedure is based on the rewriting of a multi-set formula ϕ
into an equi-satisfiable formula ϕ̃ in quantifier free logic of linear arithmetics.
The latter logic is called QFLIA theory in SMTLIB format [2] and it is the input
theory of very efficient solvers, e.g., CVC4 [1] or Z3 [3]. Moreover, because these
solvers support also an extension of this theory with uninterpreted functions,
we provide an alternative rewriting of ϕ into this theory.

First, we define the logic QFBILIA and its semantic [5]. Second, we explain
the procedure reducing QFBILIA formula to QFLIA [6]. Third, we explain the
procedure reducing QFBILIA formula to QFUFLIA. Finally, we discuss the im-
plementation choices and some implemented optimisations.

2 Logic QFBILIA

This section presents the logic fragment of quantifier free logic over bags of
integers and linear arithmetics, QFBILIA. We provide its syntax, its semantics,
and the sub-fragments used in the decision procedures described in Sections 3
and 4.

2.1 Syntax

We denote by ⊥, > the extremum term such as ∀k ∈ Z, k > ⊥, resp. k < >,
we have ⊥ < > [5]. We donote by Z≺ the set Z ∪ {⊥,>}. We use the classic
notations for operations over Z. Integer constants are denoted by k, natural
ones by n. Let Vint = {a, b, c, . . .} be a finite set of symbols denoting integer
variables, i.e., variables with values in Z. Let Vext = {m,n, p, . . .} be a finite set
of symbols denoting extremum variables, i.e., variables with values in Z≺. We
denote by M[Z] the domain of bags over integers, i.e., the set of functions Z→ N.
Let Vbag = {x, y, z, . . .} be a finite set of symbols denoting bag variables, i.e.,
variables with values in M[Z]. We suppose that Vint, Vext and Vbag are disjoint
and we don’t write explicitly the type (Z, Z≺ or M[Z]) of each variable.

2 LOGIC QFBILIA 3

Definition 1. A QFBILIA formula F is defined by the following grammar:

F ::= L | F ∨ F | F ∧ F | ¬F | F ⇒ F formula

L ::= Lint | Lbag | Lmix | Lext boolean atom

Lint ::= Tint = Tint | Tint 6= Tint | Tint < Tint | Tint ≥ Tint

Lext ::= Text = Text | Text 6= Text | Text < Text | Text ≥ Text

Lbag ::= Tbag = Tbag | Tbag 6= Tbag | Tbag ⊆ Tbag | Tbag * Tbag |
Tbag < Tbag | Tbag ≥ Tbag

Lmix ::= a ∈ Tbag | a /∈ Tbag | a ∈n Tbag | a /∈n Tbag |
m ∈ Tbag | m /∈ Tbag | m ∈n Tbag | m /∈n Tbag

Tint ::= k | a | Tint + Tint | Tint − Tint | integer term

max(Tint, Tint) | min(Tint, Tint) | ite(F, Tint, Tint)

Text ::= k | m | min(Tbag) | max(Tbag) | ite(F, Text, Text) extremum term

Tbag ::= JK | JaK | JmK | x | Tbag ∪ Tbag | Tbag ∩ Tbag | bag term

Tbag \ Tbag | Tbag] Tbag | ite(F, Tbag, Tbag)

We denote by F the set of formulas in QFBILIA, by Tint the set of integer terms,
by Text the set of extremum terms, and by Tbag the set of multi-set terms.

For a formula F , we denote by Vint(F), Vext(F) and Vbag(F) the set of
integer, resp. extremum, resp. multi-set variables used in F . We denote by
V (F) = Vint(F) ∪ Vext(F) ∪ Vbag(F) the set of variables used in F . The same
notation is overloaded for atoms and terms in QFBILIA. For a formula F , we
denote by Lint(F), Lbag(F), Lext(F) and Lmix(F) the multi-set of integer, resp.
multi-set, resp. mix literals in F . We denote by L(F) = Lint(F)] Lbag(F)]
Lmix(F)] Lext(F) the multi-set of literals in F .

2.2 Semantics

A valuation Iint of variables in Vint is a function mapping variables in Vint to
values in Z, i.e., Iint : Vint → Z. Similarly, Iext : Vext → Z≺ denotes a
valuation of variables in Vext and Ibag : Vbag → M[Z] denotes a valuation
of variables in Vbag. A valuation I of variables in Vint ∪ Vbag ∪ Vext is a tuple
of valuations (Iint, Ibag, Iext); we denote by Iint, Ibag and Iext the first, resp.
second, resp. third component of a valuation I. Let I be the set of valuations
over variables in Vint ∪ Vbag ∪ Vext. Two valuations I and I ′ agree on a set of
variables V iff ∀v ∈ V. I(v) = I ′(v). For a valuation Ibag of variables in Vbag and
a bag variable x we denote by D(Ibag(x)) = {v ∈ Z|Ibag(x)(v) > 0} the integers
occuring in the bag.

The semantics of QFBILIA is defined by

• a function ∗ : I → Tint → Z mapping a valuation and an integer term to
an integer value,

2 LOGIC QFBILIA 4

• a function • : I → Text → Z∪{⊥,>} mapping a valuation and an integer
term to an extremum value,

• a function ◦ : I → Tbag → M[Z] mapping a valuation and a multi-set
term to a multi-set value,

• a relation |=⊆ I × F between valuations and formulas.

The components above are defined inductively on the syntax of terms and for-
mulas in a mutually recursive way. This is due to the presence of ite terms.

Given a valuation I and an integer term Tint, the valuation of Tint in Z,
denoted by I∗(Tint), is defined as follows:

I∗(k) , k

I∗(a) , Iint(a)

I∗(T 1
int + T 2

int) , I∗(T 1
int) + I∗(T 2

int)

I∗(T 1
int − T 2

int) , I∗(T 1
int)− I∗(T 2

int)

I∗(max(T 1
int, T

2
int)) , max(I∗(T 1

int), I
∗(T 2

int))

I∗(min(T 1
int, T

2
int)) , min(I∗(T 1

int), I
∗(T 2

int))

I∗(ite(F, T 1
int, T

2
int)) ,

{
I∗(T 1

int) if I |= F
I∗(T 2

int) otherwise

where max(k1, k2) and min(k1, k2) are the minimum and maximum operations
over Z.

Given a valuation I and an extremum term Text, the valuation of Text in
Z ∪ {⊥,>}, denoted by I•(Text), is defined as follows:

I•(k) , k

I•(m) , Iext(m)

I•(min(Tbag)) ,

{
> if ∀k′, I◦(Tbag)(k′) = 0
k s.t. I◦(Tbag)(k) > 0 and ∀k′ < k. I◦(Tbag)(k′) = 0

I•(max(Tbag)) ,

{
⊥ if ∀k′, I◦(Tbag)(k′) = 0
k s.t. I◦(Tbag)(k) > 0 and ∀k′ > k. I◦(Tbag)(k′) = 0

I•(ite(F, T 1
ext, T

2
ext)) ,

{
I•(T 1

ext) if I |= F
I•(T 2

ext) otherwise

Given a valuation I and a bag term Tbag, the valuation of Tbag in M[Z],

2 LOGIC QFBILIA 5

denoted by I◦(Tbag), is defined as follows:

I◦(JK) , M s.t. ∀k. M(k) = 0

I◦(JaK) , M s.t. M(a) = 1 and ∀k 6= a. M(k) = 0

I◦(JmK) ,

 M s.t. M(m) = 1 and ∀k 6= m. M(k) = 0
if Iext(m) 6∈ {⊥,>}

M s.t. ∀k. M(k) = 0 otherwise

I◦(x) , Ibag(x)

I◦(T 1
bag ∪ T 2

bag) , M s.t. ∀k. M(k) = max(I◦(T 1
bag)(k), I◦(T 2

bag)(k))

I◦(T 1
bag ∩ T 2

bag) , M s.t. ∀k. M(k) = min(I◦(T 1
bag)(k), I◦(T 2

bag)(k))

I◦(T 1
bag \ T 2

bag) , M s.t. ∀k. M(k) = max(0, I◦(T 1
bag)(k)− I◦(T 2

bag)(k))

I◦(T 1
bag] T 2

bag) , M s.t. ∀k. M(k) = I◦(T 1
bag)(k) + I◦(T 2

bag)(k)

I◦(ite(F, T 1
bag, T

2
bag)) ,

{
I◦(T 1

bag) if I |= F

I◦(T 2
bag) otherwise

Given a valuation I and an integer atom Lint, the satisfiability relation
I |= Lint is defined by structural induction as follows:

I |= T 1
int = T 2

int iff I∗(T 1
int) = I∗(T 2

int)

I |= T 1
int 6= T 2

int iff I∗(T 1
int) 6= I∗(T 2

int)

I |= T 1
int < T 2

int iff I∗(T 1
int) < I∗(T 2

int)

I |= T 1
int ≥ T 2

int iff I∗(T 1
int) ≥ I∗(T 2

int)

Given a valuation I and an integer atom Lext, the satisfiability relation
I |= Lext is defined by structural induction as follows:

I |= T 1
ext = T 2

ext iff I•(T 1
ext) = I•(T 2

ext)

I |= T 1
ext 6= T 2

ext iff I•(T 1
ext) 6= I•(T 2

ext)

I |= T 1
ext < T 2

ext iff I•(T 1
ext) < I•(T 2

ext)

I |= T 1
ext ≥ T 2

ext iff I•(T 1
ext) ≥ I•(T 2

ext)

Given a valuation I and a bag atom Lbag, the satisfiability relation I |= Lbag

is defined by structural induction as follows:

I |= T 1
bag = T 2

bag iff ∀k. I◦(T 1
bag)(k) = I◦(T 2

bag)(k)

I |= T 1
bag 6= T 2

bag iff ∃k. I◦(T 1
bag)(k) 6= I◦(T 2

bag)(k)

I |= T 1
bag ⊆ T 2

bag iff ∀k. I◦(T 1
bag)(k) ≤ I◦(T 2

bag)(k)

I |= T 1
bag * T 2

bag iff ∃k. I◦(T 1
bag)(k) > I◦(T 2

bag)(k)

I |= T 1
bag < T 2

bag iff I◦(max(T 1
bag)) < I◦(min(T 2

bag))

I |= T 1
bag ≥ T 2

bag iff I◦(min(T 1
bag)) ≥ I◦(max(T 2

bag))

2 LOGIC QFBILIA 6

Given a valuation I and a mixed atom Lmix, the satisfiability relation I |=
Lmix is defined by structural induction as follows:

I |= a ∈ T 2
bag iff I◦(T 2

bag)
(
Iint(a)

)
≥ 1

I |= a /∈ T 2
bag iff I◦(T 2

bag)
(
Iint(a)

)
= 0

I |= a ∈n T 2
bag iff I◦(T 2

bag)
(
Iint(a)

)
≥ n

I |= a /∈n T 2
bag iff I◦(T 2

bag)
(
Iint(a)

)
< n

I |= m ∈ T 2
bag iff


I◦(T 2

bag)
(
Iext(m)

)
≥ 1 if Iext(m) 6∈ {⊥,>}

True if ∀k. I◦(T 2
bag)

(
k) = 0

∧ (Iext(m) ∈ {⊥,>})
False otherwise

I |= m /∈ T 2
bag iff


I◦(T 2

bag)
(
Iext(m)

)
= 0 if Iext(m) 6∈ {⊥,>}

False if ∀k. I◦(T 2
bag)

(
k) = 0

∧ (Iext(m) ∈ {⊥,>})
True otherwise

I |= m ∈n T 2
bag iff


I◦(T 2

bag)
(
Iext(m)

)
≥ n if Iext(m) 6∈ {⊥,>}

True if ∀k. I◦(T 2
bag)

(
k) = 0 ∧ n = 1

∧ (Iext(m) ∈ {⊥,>})
False otherwise

I |= m /∈n T 2
bag iff


I◦(T 2

bag)
(
Iext(m)

)
< n if Iext(m) 6∈ {⊥,>}

False if ∀k. I◦(T 2
bag)

(
k) = 0 ∧ n = 1

∧ (Iext(m) ∈ {⊥,>})
True otherwise

Given a valuation I and a formula F , the satisfiability relation I |= F is
defined by induction on the form of the formula as follows:

I |= L iff I |= L

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= ¬F iff I 6|= F

I |= F1 ⇒ F2 iff I |= ¬F1 or I |= F2

Definition 2. A QFBILIA formula F is satisfiable if there exists a valuation I,
called also its model, such that I |= F .

Let denote by JF K the set of models of F . Thus, a formula F is satisfiable if
JF K 6= ∅.
Definition 3. Two formula F and F ′ are semi-equivalent, denoted F ∼ F ′,
if V (F) ⊆ V (F ′) or V (F ′) ⊆ V (F) and ∀I ∈ JF K,∃I ′ ∈ JF ′K that agrees on
V (F) ∩ V (F ′), and ∀I ′ ∈ JF ′K,∃I ∈ JF K that agrees on V (F) ∩ V (F ′).

Definition 4. Two formula F and F ′ are equi-satisfiable, denoted F ∼sat F
′,

if JF K 6= ∅ if and only if JF ′K 6= ∅.

2 LOGIC QFBILIA 7

2.3 Examples

Example 1. If an integer a is in a multi-set x, the multi-set JaK is included in
the union of multi-sets x and y:

(a ∈ x)⇒ (JaK ⊆ (x ∪ y)) (3)

Example 2. If 1 is the smallest element of a multi-set x then x is less than y
otherwise x is greater than z:(

(min(x) = 1)⇒ (x < y)) ∧
(
(min(x) 6= 1)⇒ (x < z)

)
(4)

Example 3. If the maximum of a multi-set x is 0 then x is the empty bag or
the minimum of x is not 0:

(max(x) = 0)⇒
(
(x = JK) ∨ (min(x) 6= 0)

)
(5)

2.4 Main Fragments

The QFBILIA logic contains several fragments that are interesting for its re-
duction to QFLIA theory because they are simpler in syntax but they are, in
general, as expressive as QFBILIA.

2.4.1 Fragment QFBILIAnnf

The QFBILIAnnf fragment contains only formulas in the negated normal form,
i.e., the logical negation is pushed to the level of literals Lint, Lbag, Lmix, Lext

and ite terms are not present.

Definition 5. A QFBILIAnnf formula F is defined by the following grammar:

F ::= L | F ∨ F | F ∧ F

L ::= Lint | Lbag | Lmix | Lext

Lint ::= Tint = Tint | Tint 6= Tint | Tint < Tint | Tint ≥ Tint

Lext ::= Text = Text | Text 6= Text | Text < Text | Text ≥ Text

Lbag ::= Tbag = Tbag | Tbag 6= Tbag | Tbag ⊆ Tbag | Tbag * Tbag |
Tbag < Tbag | Tbag ≥ Tbag

Lmix ::= Tint ∈ Tbag | Tint /∈ Tbag | Tint ∈n Tbag | Tint /∈n Tbag

Tint ::= k | a | Tint + Tint | Tint − Tint |
max(Tint, Tint) | min(Tint, Tint)

Text ::= k | m | min(Tbag) | max(Tbag)

Tbag ::= JK | JaK | x | Tbag ∪ Tbag | Tbag ∩ Tbag | Tbag \ Tbag | Tbag] Tbag

We denote by Fnnf, Tint,nnf, Text,nnf, and Tbag,nnf the set of formulas, integer
terms, resp. extremum terms, resp. multi-set terms in QFBILIAnnf.

2 LOGIC QFBILIA 8

Thus, the examples (3), (6), and (5) are rewritten in QFBILIAnnf as follows:

(a /∈ x) ∨ (JaK ⊆ (x ∪ y)) (6)(
(min(x) 6= 1) ∨ (x < y)

)
∧
(
(min(x) = 1) ∨ (x < z)

)
(7)

(max(x) 6= 0) ∨
(
(x = JK) ∨ (min(x) 6= 0)

)
(8)

Proposition 1 (Section 3.1) states that QFBILIA and QFBILIAnnf have the
same expressive power, i.e., for any formula F in QFBILIA, there exists an equiv-
alent formula F̃ in QFBILIAnnf.

2.4.2 Fragment QFBILIApure

The QFBILIApure fragment allows only a restricted syntax for multi-set atoms
and terms. Intuitively, we restrict the syntax to essential terms, where no syn-
tactic sugar can be applied to simplify them. For example, the multi-set terms
of the form x∪ y∪ z are equivalent (semantically speaking) to a term x∪ y′ and
the atom y′ = y∪ z, where y′ is a fresh multi-set variable. Also, the atom x ≤ y
is equivalent (wrt the semantics, i.e., allows same set of models) to the term
max(x) ≤ min(y). The integer atoms using multi-set variables are reduced to
only two equality constraints between an integer variable and the min or max of
some multi-set variable. Thus, the fragment QFBILIApure contains only formu-
las with the simpler multi-set terms which are furthermore in negative normal
form.

Definition 6. A QFBILIApure formula F is defined by the following grammar:

F ::= L | F ∨ F | F ∧ F

L ::= Lint | Lbag | Lmix | Lext

Lint ::= Tint = Tint | Tint 6= Tint | Tint < Tint | Tint ≥ Tint

Lext ::= Text = Text | Text 6= Text | Text < Text | Text ≥ Text

Lbag ::= x = Tbag | x 6= y | x ⊆ y | x * y

Lmix ::= a ∈ x | a /∈ x | a ∈n x | a /∈n x

Tint ::= k | a | Tint + Tint | Tint − Tint | max(Tint, Tint) | min(Tint, Tint)

Text ::= k | m | min(x) | max(x)

Tbag ::= JK | JaK | x | x ∪ y | x ∩ y | x \ y | x] y

The examples (6)–(8) are semi-equivalent with the following formulas in
QFBILIApure: (

(a /∈ x) ∨ (z1 ⊆ z2)
)
∧ (JaK = z1) ∧ (z2 = (x ∪ y)) (9)(

(b1 6= 1) ∨ (b2 < b3)
)
∧
(
(b1 = 1) ∨ (b2 < b4)

)
∧(b1 = min(x)) ∧ (b2 = max(x)) ∧ (b3 = min(y)) ∧ (b4 = min(z))

(10)

(b1 6= 0) ∨
(
(x = JK) ∨ (b1 6= 0)

)
∧ (b1 = min(x)) (11)

3 DECISION PROCEDURE BY REDUCTION TO QFLIA 9

We might loose equivalency between formula due to the creation of variable,
however semi-equivalency is preserved.

Proposition 2 (Section 3.2) states that QFBILIApure and QFBILIAnnf have the
same expressive power.

3 Decision procedure by reduction to QFLIA

The decision procedure for checking satisfiability of a QFBILIA formula F pro-
ceeds in four steps. These steps are removing gradually the multi-set atoms to
obtain an equi-satisfiable formula in quantifier free linear arithmetics (QFLIA
theory).

The first step translates F into a QFBILIAnnf formula F̃ which is equiva-
lent with F , from Proposition 1. The second step transforms F̃ into an semi-
equivalent formula F̃ 2 in QFBILIApure, from Proposition 2. The third step
introduces two extremum variables to represent ⊥ and >, two sets of fresh in-
teger variables to represent (i) the elements that validates atoms x 6= y and
x * y and (ii) for each multi-set variable x ∈ Vbag(F̃ 2) and integer variable

a ∈ Vint(F̃
2), resp. extremum variable m ∈ Vext(F̃

2), an integer variable wa,x,
resp. wm,x counting the occurrences of values of a, resp. m in x. This step only

adds to F̃ 2 a formula F3 over integer variables. The formula F̃ 2 ∧ F3 is then
equi-satisfiable to F . The fourth step removes multi-set terms from F̃ 3 using
the fresh integer variables introduced by the counting abstraction and produces
a formula F̃ 4 ∧ F3 equi-satisfaisable to F .

3.1 First Step: Translation to QFBILIAnnf

The correctness of this step is stated by the following proposition whose proof
gives a procedure to build a formula F̃ in QFBILIAnnf from a formula F in
QFBILIA.

Proposition 1. For any F formula in QFBILIA, there exists a formula F̃ in
QFBILIAnnf over a set of variables Vint(F) ∪ V nnf

int and Vbag(F) ∪ V nnf
bag such that

(i) any model of F̃ is a model of F and (ii) for any model of F , there is a model
of F̃ that agrees on Vint(F) and Vbag(F).

Proof. The proof is given by construction of F̃ from F .
First, every integer term ite(F ′, T 1, T 2) is replaced by a fresh integer variable

a (i.e., not in Vint(F)) and F is rewritten in F ∧(F ′ ⇒ a = T 1)∧
(
(¬F ′)⇒ (a =

T 2)
)
. The same procedure is applied for ite terms in multi-set atoms. Using the

semantics of ite terms, we show that the formula F̃ obtained by this rewriting
satisfies the conclusion of the theorem.

Second, we apply to F̃ the de Morgan’s rules to eliminate the negation by
pushing them at the level of literals. We definite inductively on the formula
syntax a function nnf of QFBILIA→ QFBILIAnnf, for any F1, F2 ∈ QFBILIA and

3 DECISION PROCEDURE BY REDUCTION TO QFLIA 10

` ∈ L, as follows:

nnf(F1 ⇒ F2) = nnf(¬F1) ∨ nnf(F2) (12)

nnf(¬(F1 ⇒ F2)) = nnf(F1) ∧ nnf(¬F2) (13)

nnf(F1 ∨ F2) = nnf(F1) ∨ nnf(F2) (14)

nnf(¬(F1 ∨ F2) = nnf(¬F1) ∧ nnf(¬F2) (15)

nnf(F1 ∧ F2) = nnf(F1) ∧ nnf(F2) (16)

nnf(¬(F1 ∧ F2) = nnf(¬F1) ∨ nnf(¬F2) (17)

nnf(¬¬F) = nnf(F) (18)

nnf(`) = ` (19)

nnf(¬`) = ˜̀ i.e., the opposite atom of ` (20)

(21)

Since any atom has its opposice in QFBILIAnnf, and since (F∧F), (F∨F) are also
formulas in QFBILIAnnf, then nnf(F) ∈ QFBILIAnnf, (for instace ¬(T 1

int < T 2
int)

is replaced by (T 1
int ≥ T 2

int)).

3.2 Second Step: Translation to QFBILIApure

The step applies the following sequence of transformations on F̃ in QFBILIAnnf:

S2.1: Every bag atom T 1 ≺ T 2 constraint (with ≺∈ {<,≥}) is rewritten using
the min and max extremum terms as follows:

• T 1 ≥ T 2 becomes min(T 1) ≥ max(T 2)

• T 1 < T 2 becomes max(T 1) < min(T 2)

Thus, the bag atom becomes an extremum atom. Let denote by F̃2.1 the
result of this process.

S2.2: Every Tbag term used in integer, mixed, extremum atoms which is not a
variable is replaced by a fresh multi-set variable x and the multi-set atom
x = Tbag is conjuncted to F̃2.1. Let us denote by F̃2.2 the result of this
process and by V 2.2

bag the set of fresh bag variables.

S2.3: Every extremum term of the form min(x) or max(x) is replaced by a fresh
extremum variable minx rep. maxx and the mixed atom min(x) = minx

is conjuncted to F̃2.2. Let us denote by F̃2.3 the result of this process and
by V 2.3

ext the set of fresh extremum variables.

S2.4: Every bag atom Lbag of F̃2.3 using more than two bag variables for opera-
tions 6=,⊆,* and more than three variables for operation = are iteratively
rewritten to be reduced to the bag atoms in QFBILIApure. Notice that in-
teger, mixed and extremum atoms already use only bag variables and not
bag terms due to the step S2.2. So, at the end of this step, the resulting
formula F̃2.4 is in the QFBILIApure fragment. The set of fresh bag variables
is denoted by V 2.4

bag

3 DECISION PROCEDURE BY REDUCTION TO QFLIA 11

The formula F̃2.4 has the set of integer variables Vint(F̃), the set of extremum
variables Vext(F̃) ∪ V 2.3

ext and the set of bag variables Vbag(F̃) ∪ V 2.2
bag ∪ V 2.4

bag .

Example 4. We explain the previously mentioned steps on the following
QFBILIAnnf formula:

min(x ∪ y ∪ z) = min(x ∩ y ∩ z).

It is translated in the following QFBILIApure formula over the set of bag vari-
ables {x, y, z} ∪ {xunionyunionz, yunionz, xinteryinterz, yinterz} and the set
of integer variables {minxunionyunionz,minxinteryinterz} :

minxunionyunionz = minxinteryinterz ∧
minxunionyunionz = min(xunionyunionz) ∧

minxinteryinterz = min(xinteryinterz) ∧
xunionyunionz = x ∪ yunionz ∧ yunionz = y ∪ z ∧

xinteryinterz = x ∩ yinterz ∧ yinterz = y ∩ z

The correctness of this transformation with respect to the semi-equivalence
is stated by the following result.

Proposition 2. For any F̃ formula in QFBILIAnnf, there exists a formula F̃ 2 in
QFBILIApure over a set of variables Vint(F̃), Vext(F̃) ∪ V p

ext and Vbag(F̃) ∪ V p
bag

such that (i) any model of F̃ 2 is a model of F̃ and (ii) for any model of F̃ , there
is a model of F̃ 2 that agrees on Vint(F̃) and Vbag(F̃).

Proof. The proof is given by construction of F̃ 2 from F̃ following the steps
S2.1–4 above.

The formula F̃2.1 is equivalent to F̃ due to the definition of the semantics of
comparison operations over multi-sets.

The formula F̃2.2 is built over the set of variables Vint(F̃) and Vbag(F̃)∪V 2.2
bag

where V 2.2
bag is the set of fresh variables used to replace multi-set terms which are

not variables in integer, extremum or mixed atoms. The semantics of equality
between bags ensures that the equi-satisfiability is preserved.

The formula F̃2.3 is built over the set of variables Vint(F̃2.2), Vext(F̃2.2)∪V 2.3
ext

and Vbag(F̃2.2) where V 2.3
ext is the set of fresh variables used to replace extremum

term of the form min(x) or max(x). The semantics of equality between integer
ensures that the equi-satisfiability is preserved.

The formula F̃2.4 is built over the set of variables Vint(F̃2.3) and Vbag(F̃2.3)∪
V 2.4
bag where V 2.4

bag is the set of fresh variables used to replace multi-set terms
in bag atoms which don’t fit in the QFBILIApure fragment. The semantics of
equality between bags ensures that the equi-satisfiability is preserved, i.e., the
two conclusions are valid.

The formula F̃ 2 = F̃2.4 is in QFBILIApure and the two conclusions are valid
as a consequence of steps S2.1–4.

3 DECISION PROCEDURE BY REDUCTION TO QFLIA 12

3.3 Third Step: Introducing the Counting Abstraction

This step adds to F̃ 2 a formula F3 that introduces the integer variables which
will replace the multi-set variables. The transformation has three steps:

S3.1: Build the set V 31
int as a set of fresh variables, one variable for each atom

(x 6= y) or (x * y) in F̃ 2. We denote these variables by ax6=y, resp. ax*y.

Intuitively, these variables are introduced to be able to express the fact
that there is a value on which x and y differ, resp. x has more copies than
y (see subsection 3.4).

S3.2: We introduce two fresh extremum variables m⊥ and m>. Intuitively, these
variables are introduced to be able to express ⊥, resp. >.

S3.3: Build the set
V 33
int =

⋃
x∈Vbag(F̃ 2),a∈V 31

int∪Vint(F̃ 2)

wa,x,

where an integer variable is added for each pair of bag variable x and
integer variable a in order to represent the number of element a in x.

V 33
ext =

⋃
x∈Vbag(F̃ 2),m∈Vext(F̃ 2)

wm,x,

where an integer variable is added for each pair of bag variable x and
extremum variable m in order to represent the number of element m in x.
Let V 3

int = Vint(F̃
2) ∪ V 31

int. Let V 3
ele = V 3

int ∪ Vext(F̃
2).

The formula F̃ 3 is built as follows:

F̃ 3 , F̃ 2 ∧ F3 (22)

F3 ,

 ∧
a∈V 3

int

(m⊥ < a < m>)

 (23)

∧

 ∧
m∈Vext(F̃ 2)

(m> ≥ m ≥ m⊥)

 (24)

∧

 ∧
w∈V 33

int∪V 33
ext

(w ≥ 0)

 (25)

∧

 ∧
t,u∈V 3

ele

 ∧
x∈Vbag(F̃ 2)

(t 6= u) ∨ (wt,x = wu,x)

 (26)

(27)

The set of variables of F̃ 3 are Vint(F̃
3), resp. Vext(F̃

3), resp. Vbag(F̃ 2).

3 DECISION PROCEDURE BY REDUCTION TO QFLIA 13

The following property states that F̃ 3 ∼sat F̃
2:

Proposition 3. The formula F̃ 3 is in QFBILIApure and (i) any model of F̃ 3 is

a model of F̃ 2 and (ii) for any model of F̃ 2, there is a model of F̃ 3 that agrees
on Vint(F̃

2), Vext(F̃
2) and Vbag(F̃ 2).

Proof. Clearly F̃ 3 is still in QFBILIApure.

Moreover, because F̃ 3 , F̃ 2 ∧ F3, any model I of F̃ 3 is also a model of F̃ 2.
We prove now the point (ii):

A.1: I be a model of F̃ 2

C.1: There is I ′ which agrees on V (F̃ 2) to I and I ′ is a model of F̃ 3.

Proof:

1: Let I ′ = (Ibag, I
′
int, I

′
ext) such that for any a ∈ Vint(F̃

3) we have

I ′int(a) ,


Iint(a) if a ∈ Vint(F̃

2)
v if ax 6=y ∈ V 31

int and Ibag(x)(v) 6= Ibag(y)(v)
v if ax*y ∈ V 31

int and Ibag(x)(v) > Ibag(y)(v)

Ibag(x)(b) if a ≡ wb,x ∈ V 32
int

0 otherwise

for any m ∈ Vext(F̃
3) we have

I ′ext(m) ,


Iext(m) if m ∈ Vext(F̃

2)

k if m⊥ and ∀a ∈ Vint(F̃
3), k < I ′int(a)

and ∀m ∈ Vext(F̃
3), k ≤ I ′ext(m)

k if m> and ∀a ∈ Vint(F̃
3), k > I ′int(a)

and ∀m ∈ Vext(F̃
3), k ≥ I ′ext(m)

This valuation of integer and extremum variables satisfies the part F̃ 2 of
F̃ 3 by (A.1) and it satisfies the F3 part by the properties of Ibag. Thus,
C.1. is satisfied.

3.4 Fourth Step: Removing Multi-set Constraints

This step rewrites the bag atoms and the mixed atoms in order to remove the
bag terms and so transforms F̃ 3 to a formula in QFLIA. The transformation
preserves the boolean structure of the initial formulas and the integer atoms. It
is given by the S4 function defined in Figure 1.

Proposition 4. The formula F̃ 4 = S4(F̃ 3) is in QFLIA and (i) for any model
of I of F̃ 3 there is a model I ′ of F̃ 4 such that I and I ′ agree on V 3(

∫
). (ii)

for any model I of F̃ 4, there is a model I ′ of F̃ 3 such that I and I ′ agree on
Vint(F̃

3).

3 DECISION PROCEDURE BY REDUCTION TO QFLIA 14

Translation of mixed atoms:

S4(m = max(x)) ,

(m = m⊥) ∧
∧

t∈V 3
ele

(wt,x = 0)

∨
(m 6= m⊥) ∧ (m 6= m>) ∧ (wm,x ≥ 1) ∧

∧
t∈V 3

ele

((t ≤ m) ∨ (wt,x = 0))


S4(m = min(x)) ,

(m = m>) ∧
∧

t∈V 3
ele

(wt,x = 0)

∨
(m 6= m⊥) ∧ (m 6= m>) ∧ (wm,x ≥ 1) ∧

∧
t∈V 3

ele

((t ≥ m) ∨ (wt,x = 0))


S4(a ∈ x) , wa,x ≥ 1

S4(a ∈n x) , wa,x ≥ n

S4(a /∈ x) , wa,x = 0

S4(a /∈n x) , wa,x < n

S4(m ∈ x) , (m = m⊥ ∨m = m>) ∧
∧

t∈V 3
ele

(wt,x = 0) ∨ wm,x ≥ 1

S4(m ∈n x) , m 6= m⊥ ∧m 6= m> ∧ wm,x ≥ n

S4(m /∈ x) , (m 6= m⊥ ∧m 6= m>) ∨
∨

t∈V 3
ele

(wt,x 6= 0) ∧ wm,x = 0

S4(m /∈n x) , m = m⊥ ∨m = m> ∨ wm,x < n

Translation of bag atoms:

S4(x = y) ,
∧

t∈V 3
ele

(wt,x = wt,y)

S4(x ⊆ y) ,
∧

t∈V 3
ele

(wt,x ≤ wt,y)

S4(x 6= y) , wax 6=y,x 6= wax6=y,y

S4(x * y) , wa
x*y

,x > wa
x*y

,y

S4(x = JK) ,
∧

t∈V 3
ele

(wt,x = 0)

S4(x = JaK) , (wa,x = 1) ∧
∧

t∈V 3
ele

((a = t) ∨ (wt,x = 0))

S4(x = y ∪ z) ,
∧

t∈V 3
ele

(wt,x = max(wt,y, wt,z))

S4(x = y ∩ z) ,
∧

t∈V 3
ele

(wt,x = min(wt,y, wt,z))

S4(x = y] z) ,
∧

t∈V 3
ele

(wt,x = wt,y + wt,z)

S4(x = y \ z) ,
∧

t∈V 3
ele

(wt,x = max(0, (wt,y − wt,z)))

Figure 1: Translation of mixed and bags atoms

3 DECISION PROCEDURE BY REDUCTION TO QFLIA 15

Proof. Clearly F̃ 4 is in QFLIA from the definition of S4.
Point (i): Because S4 does not rewrite integer atoms, a model I of F̃ 3

satisfies, with its integer valuation Iint, the integer atoms not rewritten by S4.
The integer atoms introduced by S4 are conform with the semantics of formulas
while interpreting the variables w∗,x as counting abstractions of a bag x. Then
if I does not interpret the variables w∗,x as counting abstractions of a bag x, we
construct I ′ such that it does and agree on V 3

int with I. If x 6= y is satisfied then
there exists a value v in Z such as Ibag(x)(v) 6= Ibag(y)(v). By the choice of Iint
in the 3rd step (i.e., it satisfies F3), we have that Iint(ax 6=y) = v If m = max(x)
is satisfied then either Ibag(x) = JK and Iext(m) = Iext(m⊥), or Iext(m) is the
greatest integer of D(Ibag(x)) but different from Iext(m⊥) and Iext(m>).

Point (ii):

A.1 I is a model of S4(F̃ 3)

C.1 there is a model I ′ of F̃ 3 that agrees on Vint(F̃
3) with I

Proof:

1. Iint satisfies the F3 component of F̃ 3 which is preserved as it is by S4. By
the definition of S4, Vint(F̃

3) = Vint(S4(F̃ 3)).

2. We define a valuation of bag variables in F̃ 3, I ′bag as follows:

I ′bag(x)(v) ,

 Iint(wa,x) if v = Iint(a) for some a ∈ V 3
int

Iint(wm,x) if v = Iext(m) for some m ∈ V 3
ext

0 otherwise

Then I ′bag is a well funded function.

Proof: By the fact that Iint satisfies the constraint F3, which means that
values of wa,x and wb,x are the same if Iint(a) = Iint(b).

3. I ′ = (Iint(F̃
3), I ′bag) is a model of S4(F̃ 3).

Proof: The proof proceeds by induction on the form of atoms transformed
by S4. We show only the main points of the induction, the others are done
similarly.

3.1 for Lmix ::= m = max(x), if I |= S4(Lmix) then I ′ |= Lmix (and vice
versa).

3.1.1 If Ibag(x) 6= JK :

3.1.1.1 From definition of S4(Lmix), Iint(wm,x) ≥ 1 and Iext(m) 6=
Iext(m⊥) and Iext(m) 6= Iext(m⊥).

3.1.1.2 From 3.1.1.1 and the definition of I ′bag, Iext(m) ∈
D(Ibag(x)).

3 DECISION PROCEDURE BY REDUCTION TO QFLIA 16

3.1.1.3 There is no value v in D(Ibag(x)) greater than Iext(m)
By absurd, suppose that such a value exists, i.e., v >
Iext(m) and v ∈ D(Ibag(x)).
From the definition of I ′bag, there exists t ∈ V 3

ele such as
Iint(t) = v > Iext(m) or Iext(t) = v > Iext(m) and v =
Iint(wt,x) > 0.
This is in contradiction with the S4(Lmix) conjunct saying
that t ≤ a ∨ wt,x = 0.

3.1.2 If Ibag(x) = JK :

3.1.2.1 From definition of S4(Lmix), Iext(m) = Iext(m⊥).

The reverse direction is shown similarly.

Hence, 3.1 is valid.

3.2 for Lbag ::= x = y ∪ z, if I |= S4(Lbag) then I ′ |= Lbag (and vice versa).

3.2.1 From definition of S4(Lbag),∧
t∈V 3

ele

(Iint(wt,x) = max(Iint(wt,y), Iint(wt,z))).

3.2.2 From 3.2.1 and the definition of I ′bag,∧
t∈V 3

ele

(I ′bag(x)(Iint(t)) = max(I ′bag(y)(Iint(t)), I
′
bag(z)(Iint(t)))).

or ∧
t∈V 3

ele

(I ′bag(x)(Iext(t)) = max(I ′bag(y)(Iext(t)), I
′
bag(z)(Iext(t)))).

3.2.3 From 3.2.2 and the definition of I ′bag,∧
k∈Z

(I ′bag(x)(k) = max(I ′bag(y)(k), I ′bag(z)(k))).

3.2.4 From 3.2.3 the semantic 2.2 of Tbag and Lbag,

I ′bag(x) = I ′bag(y) ∪ I ′bag(z)

.

The reverse direction is shown similarly.

Hence, 3.2 is valid.

4. I ′ = (Iint, I
′
bag) |= S4(F̃ 3)

Proof: by 1, 2, and 3 above.

5. C.1

Proof: by 4 and the definition of I ′.

4 DECISION PROCEDURE BY REDUCTION TO QFUFLIA 17

4 Decision procedure by reduction to QFUFLIA

This section describes a reduction to QFBILIA formulas to an equi-satisfiable
formula in quantifier free linear arithmetics with uninterpreted functions QFU-
FLIA. The first two steps of the procedure are identical to the previous one
as a consequence we consider a formula F̃ 2 as input. The third step intro-
duces two extremum variables to represent ⊥ and >, a set of fresh integer
variables and a set of uninterpreted function variables to represent (i) the ele-
ments that validates atoms x 6= y and x * y and (ii) for each multi-set variable

x ∈ Vbag(F̃ 2) uninterpreted function variables Gx such as for each integer vari-

able a ∈ Vint(F̃
2), Gx(a) is counting the occurrences of values of a in x. This

step only adds to F̃ 2 a formula F3 over integer variables and uninterpreted
function. The formula F̃ 2 ∧ F3 is then equi-satisfiable to F . The fourth step
removes multi-set terms from F̃ 3 using the fresh uninterpreted function vari-
ables introduced by the counting abstraction and produces a formula F̃ 4 ∧ F3

equi-satisfaisable to F .

4.1 QFBILIAUF Syntax

Let Vuf = {G,H, . . .} be a finite set of symbols denoting uninterpreted function
variables, i.e., variables with values in Z → Z. We suppose that Vint, Vext, Vuf

and Vbag are disjoint and we do not write explicitly the type (Z, Z≺, (Z→ Z) or
M[Z]) of each variable, where Vint, Vext and Vbag are defined as in the previous
section.

Definition 7. A QFBILIAUF formula F is defined by the following grammar:

F ::= L | F ∨ F | F ∧ F | ¬F | F ⇒ F formula

L ::= Lint | Lbag | Lmix | Lext boolean atom

Lint ::= Tint = Tint | Tint 6= Tint | Tint < Tint | Tint ≥ Tint

Lext ::= Text = Text | Text 6= Text | Text < Text | Text ≥ Text

Lbag ::= Tbag = Tbag | Tbag 6= Tbag | Tbag ⊆ Tbag | Tbag * Tbag |
Tbag < Tbag | Tbag ≥ Tbag

Lmix ::= a ∈ Tbag | a /∈ Tbag | a ∈n Tbag | a /∈n Tbag

Tint ::= k | a | Tuf | Tint + Tint | Tint − Tint | integer term

max(Tint, Tint) | min(Tint, Tint) | ite(F, Tint, Tint)

Text ::= k | m | min(Tbag) | max(Tbag) | ite(F, Text, Text) extremum term

Tuf ::= G(Tint) UF term

Tbag ::= JK | JaK | x | Tbag ∪ Tbag | Tbag ∩ Tbag | bag term

Tbag \ Tbag | Tbag] Tbag | ite(F, Tbag, Tbag)

We denote by by Tuf the set of uninterpreted function terms.

4 DECISION PROCEDURE BY REDUCTION TO QFUFLIA 18

For a formula F , we denote by Vuf(F) the set of uninterpreted function
variables used in F .

4.2 QFBILIAUF Semantics

A valuation Iuf of variables in Vuf is a function mapping variables in Vuf to
values in (Z → Z), i.e., Iuf : Vuf → (Z → Z). A valuation I of variables in
Vint ∪ Vuf ∪ Vbag ∪ Vext is a tuple of valuations (Iint, Iuf, Ibag, Iext); we denote
by Iint, Iuf, Ibag and Iext the first, resp. second, resp. third, resp. fourth
component of a valuation I. Let I be the set of valuations over variables in
Vint ∪ Vuf ∪ Vext ∪ Vbag. The semantics of QFBILIAUF is defined by

• a function ∗ : I → Tint → Z mapping a valuation and an integer term to
an integer value,

• a function � : I → Tuf → Z mapping a valuation and an uninterpreted
function term to an integer value,

• a function ◦ : I → Tbag → M[Z] mapping a valuation and a multi-set
term to a multi-set value,

• a function • : I → Text → Z∪{⊥,>} mapping a valuation and an integer
term to an extremum value,

• a relation |=⊆ I × F between valuations and formulas.

I∗, I• and I◦ have the same definition as in QFBILIA, see section 2.2.
Given a valuation I and an uninterpreted function term Tuf, the valuation of
Tuf in Z, denoted by I�(Tuf), is defined as follows:

I�(G(Tint)) , Iuf(G)(I∗(Tint))

Definition 8. A QFBILIAUF formula F is satisfiable if there exists a valuation
I, called also its model, such that I |= F .

4.3 Third Step: Introducing the Counting Abstraction

This step adds to F̃ 2 a formula F3 that allow to introduce the uninterpreted
functions variable that will replace the multi-set ones. The transformation has
three steps:

Su3.1: Build the set V 31
int as a set of fresh variables, one variable for each atom

(x 6= y) or (x * y) in F̃ 2. We denote these variables by ax 6=y, resp. ax*y.

Intuitively, these variables are introduced to be able to express the fact
that there is a value on which x and y differ, resp. x has more copies than
y. see subsection 4.4.

4 DECISION PROCEDURE BY REDUCTION TO QFUFLIA 19

Su3.2: We introduce two fresh extremum variables m⊥ and m>. Intuitively, these
variables are introduced to be able to express ⊥, resp. >.

Su3.3: Build the set

Vuf =
⋃

x∈Vbag(F̃ 2)

Gx,

where an uninterpreted variable Gx is added for each bag variable x in
order to represent the bag x. Let V 3

int = Vint(F̃
2) ∪ V 31

int. Let V 3
ele =

V 3
int ∪ Vext(F̃

2).

The formula F̃ 3 is built as follows:

F̃ 3 , F̃ 2 ∧ F3 (28)

F3 ,

 ∧
a∈V 3

int

(m⊥ < a < m>)

 (29)

∧

 ∧
m∈Vext(F̃ 2)

(m> ≥ m ≥ m⊥)

 (30)

∧

 ∧
t∈V 3

ele,x∈Vbag

(Gx(t) ≥ 0)

 (31)

(32)

The set of variables of F̃ 3 are Vint(F̃
3), resp. Vuf, resp. Vbag(F̃ 2).

The following property states that F̃ 3 ∼sat F̃
2:

Proposition 5. (i) any model of F̃ 3 is a model of F̃ 2 and (ii) for any model
of F̃ 2, there is a model of F̃ 3 that agrees on Vint(F̃

2) and Vbag(F̃ 2).

Proof. Because F̃ 3 , F̃ 2 ∧ F3, any model I of F̃ 3 is also a model of F̃ 2.
We prove now the point (ii):

A.1: I be a model of F̃ 2

C.1: There is I ′ which agrees on V (F̃ 2) to I and I ′ is a model of F̃ 3.

Proof:

1: Let I ′ = (Ibag, Iint, I
′
uf) such that for any Gx ∈ Vuf(F̃

3) and for any k ∈ Z
we have

I ′uf(Gx)(k) ,



Ibag(x)(a) if Iint(a) = k for some a ∈ Vint(F̃
2)

Ibag(x)(m) if Iext(m) = k for some m ∈ Vext(F̃
2)

Ibag(x)(v) if Iint(ax6=y) = k for some ax 6=y ∈ V 31
int

and Ibag(x)(v) 6= Ibag(y)(v)
Ibag(x)(v) if Iint(ax*y) = k for some ax*y ∈ V 31

int

and Ibag(x)(v) > Ibag(y)(v)
0 otherwise

4 DECISION PROCEDURE BY REDUCTION TO QFUFLIA 20

for any m ∈ Vext(F̃
3) we have

I ′ext(m) ,


Iext(m) if m ∈ Vext(F̃

2)

k if m⊥ and ∀a ∈ Vint(F̃
3), k < I ′int(a)

and ∀m ∈ Vext(F̃
3), k ≤ I ′ext(m)

k if m> and ∀a ∈ Vint(F̃
3), k > I ′int(a)

and ∀m ∈ Vext(F̃
3), k ≥ I ′ext(m)

This valuation of integer and extremum variables satisfies the part F̃ 2 of
F̃ 3 by (A.1) and it satisfies the F3 part by the properties of Ibag. Thus,
C.1. is satisfied.

4.4 Fourth Step: Removing Multi-set Constraints

This step rewrites the bag atoms and the mixed atoms in order to remove the
bag terms as so transform F̃ 3 to a formula in QFUFLIA. The transformation
preserves the boolean structure of the initial formulas and the integer atoms. It
is given by the S4uf function defined in Figure 2.

Proposition 6. The formula F̃ 4 = Su4(F̃ 3) is in QFUFLIA and (i) any model
of F̃ 3 is a model of F̃ 4 and (ii) for any model of F̃ 4, there is a model of F̃ 3 that
agrees on Vint(F̃

3).

Proof. Clearly F̃ 4 is in QFLIA from the definition of Su4.
Point (i): Because Su4 does not rewrite integer atoms and the F3 conjunct,

a model I of F̃ 3 satisfies, with its integer valuation Iint, the integer atoms not
rewritten by Su4. The uninterpreted function atoms introduced by Su4 are
conform with the semantics of formulas while interpreting the variables X(∗) as
counting abstractions of a bag x. If x 6= y is satisfied then there exists a value v
in Z such as Ibag(x)(v) 6= Ibag(y)(v). By the choice of Iint in the 3rd step (i.e.,
it satisfies F3), we have that Iint(ax 6=y) = v If m = max(x) is satisfied then
either Ibag(x) = JK and Iext(m) = Iext(m⊥), or Iext(m) is the greatest integer
of D(Ibag(x)) but different from Iext(m⊥) and Iext(m>).

Point (ii):

A.1 I is a model of Su4(F̃ 3)

C.1 there is a model I ′ of F̃ 3 that agrees on Vint(F̃
3)

Proof:

1. Iint satisfies the F3 component of F̃ 3 which is preserved as it is by Su4. By
the definition of Su4, Vint(F̃

3) = Vint(Su4(F̃ 3)).

4 DECISION PROCEDURE BY REDUCTION TO QFUFLIA 21

Translation of mixed atoms:

S4uf(m = max(x)) ,

(m = m⊥) ∧
∧

t∈V 3
ele

(Gx(t) = 0)

∨
(m 6= m⊥) ∧ (m 6= m>) ∧ (Gx(m) ≥ 1) ∧

∧
t∈V 3

ele

((t ≤ m) ∨ (Gx(t) = 0))


S4uf(m = min(x)) ,

(m = m>) ∧
∧

t∈V 3
ele

(Gx(t) = 0)

∨
(m 6= m⊥) ∧ (m 6= m>) ∧ (Gx(m) ≥ 1) ∧

∧
t∈V 3

ele

((t ≥ m) ∨ (Gx(t) = 0))


S4uf(a ∈ x) , Gx(a) ≥ 1

S4uf(a ∈n x) , Gx(a) ≥ n

S4uf(a /∈ x) , Gx(a) = 0

S4uf(a /∈n x) , Gx(a) < n

S4uf(m ∈ x) , (m = m⊥ ∨m = m>) ∧
∧

t∈V 3
ele

(Gx(t) = 0) ∨Gx(m) ≥ 1

S4uf(m ∈n x) , m 6= m⊥ ∧m 6= m> ∧Gx(m) ≥ n

S4uf(m /∈ x) , (m 6= m⊥ ∧m 6= m>) ∨
∨

t∈V 3
ele

(Gx(t) 6= 0) ∧Gx(m) = 0

S4uf(m /∈n x) , m = m⊥ ∨m = m> ∨Gx(m) < n

Translation of bag atoms:

S4uf(x = y) ,
∧

t∈V 3
ele

(Gx(t) = Gy(t))

S4uf(x ⊆ y) ,
∧

t∈V 3
ele

(Gx(t) ≤ Gy(t))

S4uf(x 6= y) , Gx(ax 6=y) 6= Gy(ax6=y)

S4uf(x * y) , Gx(ax*y) > Gy(ax*y)

S4uf(x = JK) ,
∧

t∈V 3
ele

(Gx(t) = 0)

S4uf(x = JaK) , (Gx(a) = 1) ∧
∧

t∈V 3
ele

((a = t) ∨ (Gx(t) = 0))

S4uf(x = y ∪ z) ,
∧

t∈V 3
ele

(Gx(t) = max(Gy(t), Gz(t)))

S4uf(x = y ∩ z) ,
∧

t∈V 3
ele

(Gx(t) = min(Gy(t), Gz(t)))

S4uf(x = y] z) ,
∧

t∈V 3
ele

(Gx(t) = Gy(t) + Gz(t))

S4uf(x = y \ z) ,
∧

t∈V 3
ele

(Gx(t) = max(0, (Gy(t)−Gz(t))))

Figure 2: Translation of mixed and bags atoms

4 DECISION PROCEDURE BY REDUCTION TO QFUFLIA 22

2. We define a valuation of bag variables in F̃ 3, I ′bag as follows:

I ′bag(x)(v) ,

 Iuf(Gx)(a) if v = Iint(a) for some a ∈ V 3
int

Iuf(Gx)(m) if v = Iext(m) for some m ∈ V 3
ext

0 otherwise

Then I ′bag is a well funded function.

Proof: By the fact that Iuf satisfies the constraint F3, which means that
values of Iuf(Gx)(∗) ≥ 0.

3. I ′ = (Iint(F̃
3), I ′bag) is a model of Su4(F̃ 3).

Proof: The proof proceeds by induction on the form of atoms transformed
by Su4. We show only the main points of the induction, the others are done
similarly.

3.1 for Lbag ::= x = JaK, if I |= Su4(Lbag) then I ′ |= Lbag (and vice versa).

3.1.1 From definition of Su4(Lbag),

(Iuf(Gx)(Iint(a)) = 1) ∧
∧

b∈V 3
int

((Iint(a) = Iint(b)) ∨ (Iuf(Gx)(Iint(b)) = 0))

∧
∧

m∈V 3
ext

((Iint(a) = Iext(m)) ∨ (Iuf(Gx)(Iext(m)) = 0)).

3.2.2 From 3.1.1 and the definition of I ′bag,

(Ibag(x)(Iint(a)) = 1) ∧
∧

b∈V 3
int

((Iint(a) = Iint(b)) ∨ (Ibag(x)(Iint(b)) = 0))

∧
∧

m∈V 3
ext

((Iint(a) = Iext(m)) ∨ (Ibag(x)(Iext(m)) = 0)).

3.3.3 From 3.1.2 and the definition of I ′bag,

(Ibag(x)(Iint(a)) = 1) ∧
∧
k∈Z

((Iint(a) = k) ∨ (Ibag(x)(k) = 0)).

3.4.4 From 3.1.3 the semantic 2.2 of Tbag and Lbag,

I ′bag(x) = JIint(a)K

.

The reverse direction is shown similarly.

Hence, 3.1 is valid.

3.2 for Lbag ::= x 6= y, if I |= Su4(Lbag) then I ′ |= Lbag (and vice versa).

5 IMPLEMENTATION 23

3.2.1 From definition of Su4(Lbag),

Iuf(Gx)(Iint(ax 6=y)) 6= Iuf(Gy)(Iint(ax 6=y))

.

3.2.2 From 3.2.1 and the definition of I ′bag,

Ibag(x)(Iint(ax 6=y)) 6= Ibag(y)(Iint(ax 6=y))

.

3.2.3 From 3.2.2 and the definition of I ′bag,

∃k ∈ ZIbag(x)(k) 6= Ibag(y)(k)

.

3.2.4 From 3.2.3 and the semantic 2.2 of Lbag,

I ′bag(x) 6= I ′bag(y)

.

The reverse direction is shown similarly.

Hence, 3.2 is valid.

4. I ′ = (Iint, I
′
bag) |= Su4(F̃ 3)

Proof: by 1, 2, and 3 above.

5. C.1

Proof: by 4 and the definition of I ′.

5 Implementation

To obtain efficient solving times, we implemented several optimisation of the
procedures described in the previous section. We describe these optimisations in
the next subsections. It is important to understand that our decision procedure
being based upon an SMT solver, we want our output formula to be as friendly
as possible. However, we try to keep our computation time as small as possible
too. The challenge is to understand when we should increase our computation
time in order to decrease the computation time of SMT solvers. As shown by
our benchmark, the SMT solvers are very efficient when dealing with standards
operations (for instance, convert a formula in CNF), hence we do not modify
our formula form. However SMT solvers computation time increases with the
number of atoms in the input formula. As a consequence it is interesting to
reduce this number by our reduction procedure, if it does not increase too much
our computation time (see Section 5.4).

5 IMPLEMENTATION 24

5.1 Unitary Bag Optimisation

Many atoms are added in steps 2-4 due to Lbag and Lmix; more precisely, their
number is linear in the number of variable in Vint and Vbag. To reduce this
number, we rewrite the formulas in the left side below to the right side formulas
which add less variables and conjunctions in steps 2-4:

JaK ⊆ x ∼sat a ∈ x
JaK * x ∼sat a /∈ x
max(JaK) = a
min(JaK) = a

In S4, a ∈ x does not add any conjunction to the formula, hence the output
have fewer atoms than the equi-satisfiable one with JaK ⊆ x. As a /∈ x does
not add any variable to Vint fewer atoms will be conjuncted during S4 than
with JaK * x Same can be said about max(JaK) and min(JaK) where step 2
adds a fresh variable to Vint and step 4 conjuncts many atoms. Notice that the
rewriting can be done without any increase of computation time, as it is just a
different rewriting of an already existing literal.

5.2 Bag variables creation

In step 2.4, every bag atom Lbag of F̃2.3 using more than two bag variables for
operations 6=,⊆,* and more than three variables for operation = are iteratively
rewritten to be reduced to the bag atoms in QFBILIApure. However, this rewrit-
ing adds many bag variable which cost a lot of computation time, as we will
have to deal with more bags. Let define a function apply : (Tbag, Vint) → Tint

by:

apply(x, a) = wa,x (33)

apply(T 1
bag ∪ T 2

bag, a) = max(apply(T 1
bag, a), apply(T 2

bag, a)) (34)

apply(T 1
bag ∩ T 2

bag, a) = min(apply(T 1
bag, a), apply(T 2

bag, a)) (35)

apply(T 1
bag] T 2

bag, a) = apply(T 1
bag, a) + apply(T 2

bag, a) (36)

apply(T 1
bag \ T 2

bag, a) = max(0, apply(T 1
bag, a)− apply(T 2

bag, a)) (37)

(38)

Then we can extend S4:

S4(T 1
bag = T 2

bag) ,
∧

t∈V 3
ele

(apply(T 1
bag, t) = apply(T 2

bag, t))

while preserving equi-satisfiability. Same can be done for 6=,⊆,* operators.
This rewriting allows us to skip the step 2.4.

5.3 Integer Element Optimisation

A QFBILIA formula might have pure integer variables, i.e., integer variables that
are not involve in any bag, mix or extremum literals. Such variable does not

6 CONCLUSION 25

have to be consider during the counting abstraction as they do not constrain
any bag, hence we can reduce the cardinal of V 3

ele

Definition 9. Let a formula F in QFBILIA let two variable u, v in Vint(F) ∪
Vbag(F) then u operate with v, denote u w v, iff exists l in L(F) where u and v
are in Vint(l) ∪ Vbag(l).

u w v ⇐⇒ ∃l ∈ L(F), u, v ∈ Vint(l) ∪ Vbag(l)

Definition 10. Let a formula F in QFBILIA , Vope(F) is the set of integer
variable:

Vope(F) = {a ∈ Vint(F)|∃x ∈ Vbag(F), a w y} ∪ Vext

and
< Vope(F) >= {a ∈ Vope(F)|∃b ∈ Vope(F), a w b}

Proposition 7. If V 3
ele is redefined (step 3-4) as :V 3

ele =< Vope(F) > then (i)
Property 3 is still valid, and (ii) Property 4 is still valid.

Proof. The proof is the same as before because the only difference is the absence
of useless w.

5.4 Benchmark

Our solvers takes as input problems written in the SMTLIB format [2] for the
theory of bags and sets.

We applied it on a benchmark of 295 problems generated from verification
conditions generated by [4] for programs manipulating data structures like lists,
binary search trees, AVL, skip lists,. . . . All problems take less than 1 sec to be
reduced to the base theory (QFLIA or QFUFLIA).

6 Conclusion

We defined the logic QFBILIA to express constraints over bags of integers. We
then presented two decision procedures for QFBILIA. The main flow of our work
is that we were only able to be determinist because we were working with bags
of integers. Moreover the efficiency of our decision procedures rely on the SMT
solvers upon which we are working.

Acknowledgments

I would like to express my special thanks of gratitude to my internship tutors
Arnaud Sangnier and Mihaela Sighireanu who gave me opportunity to work on
multi-set constraints, helped me in doing research, and corrected my mistakes.
I am really thankful to them.

26

Appendices
SMTLIB2 Syntax

Constraints SMT-LIB2
¬p (not p)
p ∧ q (and p q)
p ∨ q (or p q)
p⇒ q (=> p q)
a + b (+ a b)
a− b (− a b)

ite p a b (ite p a b)
max(a, b) (max a b)
min(a, b) (min a b)
a ≤ b (<= a b)
a < b (< a b)
a ≥ b (>= a b)
a > b (> a b)
a = b (= a b)
a 6= b (neq a b)
JaK (bag a)
JaKn (bagn a n)
JK emptybag

x ∪ y (bagunion x y)
x ∩ y (baginter x y)
x] y (bagsum x y)
x \ y (bagminus x y)
x = y (= x y)
x 6= y (neq x y)
x ⊂ y (subset x y)
x ⊆ y (subseteq x y)
x * y (nsubseteq x y)
x ∈ y (in x y)
x ∈n y (inn x y n)
x /∈ y (ni x y)

ite p x y (ite p x y)
max(x) (bagmax x)
min(x) (bagmin x)
x ≤ y (<= x y)
x ≥ y (>= x y)
x > y (> x y)
x < y (< x y)

REFERENCES 27

References

[1] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, De-
jan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In
Computer Aided Verification, LNCS, pages 171–177. Springer, 2011.

[2] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[3] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, LNCS,
pages 337–340. Springer, 2008.

[4] Constantin Enea, Ondřej Lengál, Mihaela Sighireanu, and Tomáš Vojnar.
Compositional entailment checking for a fragment of Separation Logic.
In Asian Programming Languages and Systems, LNCS, pages 314–333.
Springer, 2014.

[5] Ruzica Piskac, Philippe Suter, and Viktor Kuncak. On decision procedures
for ordered collections. Technical report, 2010.

[6] Calogero G Zarba. Combining multisets with integers. In Automated
Deduction—CADE-18, LNCS, pages 363–376. Springer, 2002.

	Introduction
	Logic QFBILIA
	Syntax
	Semantics
	Examples
	Main Fragments
	Fragment QFBILIAnnf
	Fragment QFBILIApure

	Decision procedure by reduction to QFLIA
	First Step: Translation to QFBILIAnnf
	Second Step: Translation to QFBILIApure
	Third Step: Introducing the Counting Abstraction
	Fourth Step: Removing Multi-set Constraints

	Decision procedure by reduction to QFUFLIA
	QFBILIAUF Syntax
	QFBILIAUF Semantics
	Third Step: Introducing the Counting Abstraction
	Fourth Step: Removing Multi-set Constraints

	Implementation
	Unitary Bag Optimisation
	Bag variables creation
	Integer Element Optimisation
	Benchmark

	Conclusion
	Appendices

