
Interpolation Procedures
Deliverable D1-3

ANR project VECOLIB

September 2016

Abstract

This deliverable reports on the state of the art concerning interpolation procedures for theories
other than integer/real arithmetic with uninterpreted functions. We investigate high-level theo-
ries of strings and algebraic data types (ADT) as well as low-level theories of arrays, lists and
separation logic.

A signature Σ = (Σs,Σf) consists of a set Σs of sort symbols and a set Σf of function symbols
fσ1···σnσ, where n ≥ 0 is its arity, σ1, . . . ,σn ∈ Σs are the sorts of its arguments and σ ∈ Σs is the sort
of its result. If n = 0, we call fσ a constant symbol. We assume that every signature contains the
boolean sort, and write > and ⊥ for the boolean constants true and false. Let Var be a countable set
of first-order variables, each variable xσ ∈ Var having an associated sort σ. We omit specifying the
sorts of the function symbols and variables, whenever they are not important. Terms and formulas are
defined recursively as usual.

A partial Σ-structure M is a function that maps each sort σ ∈ Σs to a non-empty set M(σ) and each
function symbol fσ1···σnσ ∈ Σf into a partial function M(f) : M(σ1)× . . .×M(σn) ⇀ M(σ). We denote
by [M] =

⋃
σ∈Σs M(σ) the support of M.

Given a formula φ, a (partial) Σ-structure M and an valuation ν of the free variables in φ, we write
M, ν |= φ if M is a model of φ under ν, defined recursively, as usual. We write φ |= ψ if, for every
Σ-structure M and every valuation ν, M, ν |= φ implies M, ν |= ψ. A Σ-theory T is a set of formulae
with no free variables (sentences) that is closed under entailments, i.e. φ ∈ T and φ |= ψ implies ψ ∈ T .

Given an unsatisfiable conjunction of formulae A∧ B |= ⊥, a Craig interpolant (interpolant) for
A∧B is a formula I such that: (1) A |= I, (2) I ∧B |= ⊥, and (3) I contains only logical symbols that
are common to both A and B. Using classical proof-theoretic arguments, it is possible to prove the
following points [5, Theorem 8]:

1. every r.e.1 theory is interpolating.
2. every r.e. theory that has quantifier elimination is quantifier-free interpolating.
3. every quantifier-free interpolating theory eliminates quantifiers.
Basically every interpolant inference (interpolation) procedure is based on a decision procedure

for the theory of A and B and depends highly on the particular techniques used by the decision proce-
dure. For this reason, interpolation is integrated within Satisfiability Modulo Theories (SMT) solvers.
In general, interpolation procedures exist for linear integer/real arithmetic (LIA/LRA) possibly with
uninterpreted functions (UFLIA/UFLRA). This deliverable aims to document the state of the art for
the interpolation procedures other than (UF)LIA/LRA.

1A theory is r.e. if the set of sentences in the theory is r.e.

1

The Vecolib proposal mentions the possibility of applying interpolation-based abstraction refine-
ment model checking to the verification of low-level pointer handling programs. This entails the de-
velopment of interpolation techniques for Separation Logics (SL), required to refine the abstract model
of the program, by annotations used to exclude spurious counterexamples from the state search.

However, an interpolation-based verifier needs a fast entailment checker (SMT solver) for the
underlying theory of pointers (in our case, SL) in order to detect abstract states that are covered
(subsumed) by other abstract states, labeled with SL assertions. Our experience with the development
of decision procedures for SL (reported in the deliverables D1.1 and D4.3) shows that, currently,
the performance of SL solvers is unsuitable for the needs of lazy annotation abstraction refinement
checkers, based on predicate abstraction or the Impact algorithm. This is partly due to the complexity
of the satisfiability problem (PSPACE -complete for quantifier-free SL, instead of NP-complete for
LIA or LRA) and partly due to the lack of maturity of the existing solvers.

Due to this reason, in the rest of the Vecolib project, we envisage experimenting with interpolation
in high-level logics, by adapting our alternating data automata (ADA) emptiness checker (reported in
deliverable D4.5) to work with strings and algebraic data types, in addition to linear arithmetic.

1 Interpolation for High Level Logics

1.1 Interpolation for Strings

This section summarizes the work of Abdulla et al [1] reporting on a decision procedure used for
interpolation-based model checking of string-manipulating programs. It is worth pointing out that
both the decision and interpolation procedures are incomplete, due to the intrinsic hardness of word
problems [6]. We consider the signature Σstr with sorts Σs

str = {Bool, Int,String,Reg} and the following
constant symbols:

ε : String
· : String×String→ String
|.| : String→ Int
∈ : String×Reg→ Bool

The atoms of the string logic are equalities s ≈ t and disequalities s 6≈ t between string terms involv-
ing variables, interpreted over a set U of strings, arithmetic inequalities e ≤ e′ between linear terms
involving length terms |s| and membership constraints s ∈ R, where R is a regular language described
by a regular expression, or, equivalently, a finite automaton.

The satisfiability of quantifier-free first order formulae of this theory is an open problem. However
the subfragment of the logic consisting of word equalities and disequalities in which no string variable
occurs more than once in an equality or disequality, and furthermore there are no cyclic dependencies
between string variables, is shown to be decidable. The algorithm is based on a set of sound and locally
complete inference rules whose application strictly decreases the size of the consequent formulae.

The interpolation procedure is based on the decision procedure for the fragment of the logic. The
interpolation is incomplete, because it returns only interpolants of the form x1$x2$. . .$xn ∈ R, where
$ is a delimiter symbol and R is a regular language of a bounded size (the bound is either on the size
of the regular expression or the minimal automaton for R) over the alphabet of strings including $.

Consider an interpolation problem φ(x1, . . . , xn)∧ψ(x1, . . . , xn). Starting with two sets of strings A
and B, initially empty, the algorithm repeats the following steps while there is a regular language R of
size L, such that A ⊆ R and B∩R = ∅:

2

1. if φ(x1, . . . , xn)∧¬(x1$. . .$xn ∈ R) is satisfiable, let ν be a satisfying assignment and update A to
A∪

{
ν(x1)$. . .$ν(xn)

}
;

2. else if ψ(x1, . . . , xn)∧ x1$. . .$xn ∈ R is satisfiable, let ν be a satisfying assignment and update B
to B∪

{
ν(x1)$. . .$ν(xn)

}
;

3. otherwise return the interpolant x1$. . .$xn ∈ R.

1.2 Interpolation by Reduction

This section summarizes the work of Kapur, Majumdar and Zarba [5] that computes (not necessarily
quantifier-free) interpolants in the theories of arrays, sets and multisets by reduction to the theory of
equality and uninterpreted functions. Let T be a Σ-theory and let R be a Ω-theory such that Ωs ⊆ Σs

and Ωf ⊆ Σf . We say that T reduces to R if there is a computable map from flat Σ-atoms to Ω-formulae
such that ϕ∗ denotes the homomorphic application of the map to a Σ-formula ϕ and:
• ϕ and ϕ∗ are T -equivalent,
• if ϕ∗ is R-satisfiable then ϕ is T -satisfiable.

The reduction approach to interpolation assumes that T reduces to R and it is possible to compute
an R-interpolant of any unsatisfiable conjunction ϕ∧ψ |= ⊥. Then it is possible to compute a T -
interpolant for any unsatisfiable quantifier-free conjunction ϕ∧ψ |= ⊥. In this work, it is assumed
that interpolants are computed from Gentzen-style or tableaux proofs in the theory of equality with
uninterpreted functions [3].

Arrays The extensional theory of arrays, with signature Σarr, with sorts Σs
arr = {array, index,elem}

and function symbols Σf
arr = {rd,wr}, where:

rd : array× index→ elem
wr : array× index×elem→ array

is reduced to Ωarr, where Ωs
arr = Σs

arr and Ωf
arr = {rd} as follows:

a ≈ b 7→ ∀i . rd(a, i) ≈ rd(b, i)
a ≈ wr(b, i,e) 7→ rd(a, i) ≈ e∧∀ j . j 6≈ i→ rd(a, j) ≈ rd(b, j)

Sets The theory of sets with finite cardinality constraints has the signature Σset, with sorts Σs
set =

{set,elem} and function symbols Σf
set = {,1,∪,∩,\, {.} ,∈, {|.| ≥ k}k∈N , {|.| = k}k∈N}, where:

∅,1 : set
∪,∩,\ : set×set→ set

∈ : elem×set→ set
|.| ≥ k, |.| = k : set→ bool

This theory is reduced to the theory with signature Ωset, with sorts Ωset = Σset and function symbols
Ωf

set = {∈}, as follows:

x ≈ y 7→ ∀e . e ∈ x↔ e ∈ y
x ≈ ∅ 7→ ∀e . e < x
x ≈ 1 7→ ∀e . e ∈ x

x ≈ y∪ z 7→ ∀e . e ∈ x↔ (e ∈ y∨ e ∈ z)
x ≈ y∩ z 7→ ∀e . e ∈ x↔ (e ∈ y∧ e ∈ z)
x ≈ y \ z 7→ ∀e . e ∈ x↔ (e ∈ y∧ e < z)
x ≈ {e0} 7→ ∀e . e ∈ x↔ e ≈ e0

|x| ≥ k 7→ ∃e1 . . .ek .
∧k

i=1 ei ∈ x∧
∧

1≤i< j≤k ei 6≈ e j

|x| = k 7→ ∃e1 . . .ek .
∧k

i=1 ei ∈ x∧
∧

1≤i< j≤k ei 6≈ e j∧∀e . e ∈ x→
∨k

i=1 e ≈ ei

3

Multisets The theory of multisets has signature Σbag, with sorts Σs
bag = Ints∪{bag,elem} and function

symbols Σf
bag = Intf ∪{[[.]],t,u,],cnt}, where:

[[.]] : elem× int→ bag
t,u,] : bag×bag→ bag

cnt : elem×bag→ int

This theory is reduced to the theory of integers with uninterpreted functions and equality as follows:

x ≈ y 7→ ∀e . cnt(x,e) ≈ cnt(y,e)
x ≈ yt z 7→ ∀e . cnt(e, x) ≈max(cnt(e,y),cnt(e,z))
x ≈ yu z 7→ ∀e . cnt(e, x) ≈min(cnt(e,y),cnt(e,z))
x ≈ y] z 7→ ∀e . cnt(e, x) ≈ cnt(e,y) + cnt(e,z)

x ≈ [[e0]](u) 7→ cnt(e0, x) = max(0,u)∧∀e . e , e0→ cnt(e, x) ≈ 0

A recent extension of this work reduces the theory of algebraic data types to the theory of integers
with uninterpreted functions and equality [4].

2 Interpolation for Low Level Logics

2.1 Instantiation-based Interpolation for Arrays and Lists

This section summarizes the work of Totla and Wies [8]. This work generalizes the notion of local
theory extension to cope with ground interpolation. For a signature Σ0 = (Σs

0,Σ
f
0) a theory T0 is a

set of formulae over Σ0 that are consequences of a set of axioms K0. A theory extension is a theory
T1 = T0 ∪K where K is a set of axioms over the extended signature Σ1 = (Σs

0 ∪ Σs
e,Σ

f
0 ∪ Σf

e). An
embedding closure for T1 is a function Ψ associating a finite set of ground terms T a finite set of
ground terms Ψ(T) such that:
• st(K) ⊆ Ψ(T), where st(K) is the set of ground subterms in K ,
• T ⊆ T ′ implies Ψ(T) ⊆ Ψ(T ′),
• Ψ(Ψ(T)) ⊆ Ψ(T) for all sets of ground terms T ,
• Ψ(h(T)) = h(Ψ(T)), where h is a map between constants extended homomorphically to terms.

We say that T1 is a Ψ-local theory extension of T0 if, for every set of ground clauses G, T1∪G |=⊥ iff
T0∪K[Ψ(G)]∪G |=⊥, whereK[Ψ(G)] is the set of instances ofK in which all extension terms are in
Ψ(G). In other words, Ψ(G) extracts those subterms from G that are necessary to prove unsatisfiability.

The notion of local theory extension is however not suitable for interpolation, because Ψ(G) may
contain terms over function symbols that are not shared between A and B. A possible solution is to
impose strict syntactic restrictions on the form of the axioms in K , as it is the case in the work of
Sofronie-Stokkermans [7].

The solution adopted in [8] is model-theoretic. Given partial Σ-structures M and N, a weak em-
bedding is an injective function h : [M] → [N] such that for all f ∈ Σf and all a1, . . . ,an ∈ [M], if
M(f) is defined on a1, . . . ,an then N(f)(h(a1), . . . ,h(an)) = h(M(f)(a1, . . . ,an)). If there exists a weak
embedding h : [M]→ [N] and [M] ⊆ [N] then M is a partial substructure of N, denoted M ⊆ N.

An amalgamation closure for a theory extension T1 = T0∪K is a function associating with finite
set of ground terms TA and TB a finite set W(TA,TB) of ground terms such that:
• st(K)∪ st(TA) ⊆W(TA,TB),

4

• TA ⊆ T ′A and TB ⊆ T ′B implies W(TA,TB) ⊆W(T ′A,T
′
B),

• W(W(TA,TB),W(TB,TA)) ⊆W(TA,TB),
• W(h(TA),h(TB)) = h(W(TA,TB)) for any map on constant symbols such that h(c1) , h(c2) for

every c1 ∈ st(TA) and c2 ∈ st(TB) not shared between TA and TB,
• W(TA,TB) only contains TA-pure terms.

Given formulae A and B, we write W(A,B) for W(st(A), st(B)). An extension theory T1 =T0∪K is W-
separable if for all sets of ground clauses A and B, T1∪A∪B |=⊥ iff T0∪K[W(A,B)]∪K[W(B,A)]∪
B |=⊥. Clearly, W-separable theory extensions are local but not viceversa. Moreover, the interpolation
problem for a W-separable theory extension T1 can be reduced to the ground interpolation problem
for the base theory T0.

The question is which theories are W-separable and how to define the amalgamation closure W
? An amalgam for a theory T is a tuple (MA,MB,MC), where MA,MB,MC are models of T such
that MA ⊇ MC ⊆ MB and [MC] = [MA]∩ [MB]. The theory T has the amalgamation property if for
each amalgam (MA,MB,MC) there exists a model MD such that MA ⊆ MD ⊇ MB. This notion allows
to prove the existence of ground interpolants for an theory extension but gives no means to build
them using ground interpolation for the base theory. For this reason, the authors of [8] use partial
W-amalgams, defined below.

For a partial model M of T1, let T (M) =
{
f (a1, . . . ,an) | ai ∈ [M], f ∈ Σf

e,M(f)(a1, . . . ,an) defined
}
.

If W is an amalgamation closure for T1, a partial W-amalgam is a tuple (MA,MB,MC) such that:
• MA,MB,MC are partial models of T1,
• MA ⊇ MC ⊆ MB,
• [MC] = [MA]∩ [MB],
• W(T (MA),T (MB)) ⊆ T (MA) and W(T (MB),T (MA)) ⊆ T (MB),
• T (MA)∩T (MB) ⊆ T (MC).

A theory extension T1 has the partial W-amalgamation property if for all partial W-amalgams
(MA,MB,MC) there exists a model MD of T1 such that MA ⊆ MD ⊇ MB. Finally, a theory extension
T1 = T0 ∪K is W-separable if it has the partial W-amalgamation property. This semantic criterion
is applied to give interpolation procedures for two theory extensions, namely a theory of arrays with
difference function and a theory of linked lists.

2.1.1 Theory of Arrays

Given a base theoryT0 with sorts index and elem, the theory of arraysTarr =T0∪Karr is the extension
of T0 with the extended signature and axioms below:

rd : array× index→ elem
wr : array× index×elem→ array

diff : array×array→ index

rd(wr(a, i,e), i) = e
i , j⇒ rd(wr(a, i,e), j) = rd(a, j)
a , b⇒ rd(a,diff (a,b)) , rd(b,diff (a,b))

where rd and wr are the usual read and write functions and diff (a,b) returns the first index where a
and b differ, undefined if a = b. The following function is an amalgamation closure and the theory
Tarr has the partial amalgamation property w.r.t. to it:

Warr(TA,TB) = T1∪{rd(a, i) | a, i ∈ st(T1),rd(b, i) ∈ T1∪ st(TB)}
T1 = st(T0∪{rd(a,diff (a,b)) | a,b ∈ st(TA)})

T0 = st(TA∪{a
k
−→ b | a,b ∈ st(TA∩TB)})

where a
0
{ b = a and a

k
{ b = wr(a

k−1
−−→ b,diff (a

k−1
{ b,b),rd(b,diff (a

k−1
{ b,b))), for all k > 0

5

It is important to notice that the diff function is essential for the existence of ground interpolants. For
instance, there is no ground interpolant, containing only the constants a,b and the function symbols
rd,wr for the unsatisfiable conjunction:

b = wr(a, i,e)︸ ︷︷ ︸
A

∧ j , k∧ rd(a, j) , rd(b, j)∧ rd(a,k) , rd(b,k)︸ ︷︷ ︸
B

|= ⊥

On the other hand, b = wr(a,diff (a,b),rd(b,diff (a,b))) is an interpolant for A∧B.

2.1.2 Theory of Lists with Reachability

The theory of lists and reachability is defined as the extension Tllr = T0 ∪Kllr of the base theory T0
with a dedicated sort addr and extension symbols:

rd : field×addr→ addr
wr : field×addr×addr→ field
R : field×addr×addr×addr→ bool

jp, lb : field×addr×addr→ addr
d f : field×field→ addr
cy : field×addr→ bool

Where field is an extension sort interpreted over functions between addr, rd and wr are the usual
function read/write operations, R(f , x,y,z) denotes reachability of y from x through f avoiding z,
jp(f , x,y) denotes the join point of the f -segments starting in x and y, lb(f , x,y) is the address reachable
from x through f just before y and cy(f , x) is true iff x stands on an f -cycle. As before, d f is the first
address where two fields differ. The axioms from Kllr include the usual read-over-write, reflexivity
and transitivity of reachability and the following axioms for jp, lb and cy, where x

f /z
−−→ y stands for

R(f , x,y,z) and x
f
−→ y for x

f /y
−−→ y:

x
f
−→ jp(f , x,y)

x
f
−→ z∧ y

f
−→ z⇒ y

f
−→ jp(f , x,y)

x
f
−→ z∧ y

f
−→ z⇒ x

f /z
−−→ jp(f , x,y)

y
f
−→ jp(f , x,y)∨ jp(f , x,y) = x

x
f /y. f
−−−→ y⇒ lb(f , x,y. f) = y

x
f
−→ y∧ y

f
−→ x⇒ cy(f , x)∨ x = y

cy(f , x)∧ x
f
−→ y⇒ y

f
−→ x

As before, several examples show that ground interpolation requires the extension symbols jp, lb,d f
and cy, for instance in:

c
f /c′

−−→ a∧a , c′∧a. f = c′∧P(a)︸ ︷︷ ︸
A

∧c
f /c′

−−→ b∧b , c′∧b. f = c′∧¬P(b)︸ ︷︷ ︸
B

|= ⊥

where P : addr→ bool is a predicate symbol. A ground interpolant here is P(lb(f ,c,c′)).
The following function Wllr is an amalgamation closure. It is proved that the theory Tllr has the

partial amalgamation property w.r.t. Wllr and thus, the ground interpolation property.

Wllr(TA,TB) = T5∪{cy(f ,a) | f ,a ∈ T5 shared with TB}

T5 = T4∪{a
f /c
−−→b| a,b,c ∈ T4}

T4 = T3∪{ jp(f ,a,b) | a,b, f ∈ T3 shared with TB}

T3 = T2∪{lb(f ,a,b) | a,b, f ∈ T2}

T2 = T1∪{a. f | f ,a ∈ st(T1),a.g ∈ T1∪ st(TB)}
T1 = st(T0∪{d f (f ,g). f | f ,g ∈ st(TA)})

T0 = st(TA∪{ f
k
{ g | f ,g ∈ st(TA∪TB)})

6

2.2 Interpolation for Separation Logic

This section summarizes the work of Albargouthi et al. [2]. This sets the grounds for interpolation-
based abstraction refinement model checking of heap manipulating programs, describing an interpo-
lation procedure for program paths labeled with Separation Logic (SL) assertions.

We consider a signature Σ, such that Σs = {Loc,Data,Bool}, i.e. the only sorts are the boolean,
data and location sort, with no function symbols defined on it, other than equality. Most definitions
of common recursive data structures employed by programers (e.g. lists, trees, etc.) use a restricted
fragment of quantifier-free SL, consisting of formulae Π∧Θ, called symbolic heaps, in the following
syntax, for pure (Π) and spatial (Θ) formulae defined as follows:

Π F x ≈ y | ¬x ≈ y | ϕ | Π1∧Π2 Θ F emp | x 7→ (y1, . . . ,yk) | P(R,x) | Θ1 ∗Θ2

where ϕ is any quantifier-free formula belonging to a theory TData of the data sort. Inductive defini-
tions are introduced as P(R,x) ≡ ∃X1.Π1∧Θ1∨ . . .∨∃Xn.Πn∧Θn, where R is a vector of second order
variables and x is a vector of first order variables. Second order variables are interpreted as data sets,
while first order variables as either location or data elements. Essentially, the second-order variables
constrain the data values in every instance of the inductive predicate to belong to a given set.

The sort Loc is interpreted as an infinite countable set L. A heap is a finite partial mapping
h : L⇀fin (L∪D)k associating locations with k-tuples of values, either locations or data. We denote by
dom(h) the set of locations on which h is defined, by img(h) the set of locations occurring in the range
of h, and by Heaps the set of heaps. Two heaps h1 and h2 are disjoint if dom(h1)∩dom(h2) = ∅. In this
case h1] h2 denotes their union, which is undefined if h1 and h2 are not disjoint. Given a valuation
ν : Var→ L∪D and a heap h, the semantics of SL formulae is defined as follows:

ν,h |=sl x ≈ y ⇐⇒ ν(x) = ν(y)
ν,h |=sl emp ⇐⇒ h = ∅

ν,h |=sl x 7→ (y1, . . . ,yk) ⇐⇒ h = {〈ν(x), (ν(y1), . . . , ν(yk))〉}
ν,h |=sl φ1 ∗φ2 ⇐⇒ there exist h1,h2 ∈ Heaps : h = h1]h2 and I,hi |=sl φi, i = 1,2
ν,h |=sl ∃x . ϕ(x) ⇐⇒ ν[x← `],h |=sl ϕ(x), for some ` ∈ L

The semantics of boolean connectives and data constraints is the usual one, omitted for brevity.

Example The following defines a binary tree parameterized by three second order variables: Q is a
constraint on the data in each node and L (R) is a relation between the data in the current node and
each data element in the left (right) subtree.

bt(Q,L,R, x) ≡ x = nil∧emp ∨
∃d, l,r . Q(d)∧ x 7→ (d, l,r) ∗ bt((λa . Q(a)∧L(d,a)),L,R, l)

∗ bt((λa . Q(a)∧R(d,a)),L,R,r)

Instances of this predicate are: a binary search tree bt((λa.>), (λa,b.a ≥ b), (λa,b.a ≤ b), x), and a heap
tree of positive elements bt((λa.a ≥ 0), (λa,b.a ≤ b), (λa,b.a ≤ b), x). �

Given a path π = e1; . . .en of program statements ei, the spatial interpolation algorithm proceeds in
three phases:

1. the path is proved safe by annotation with strongest postconditions obtained from symbolic
execution {φ0}e1 {φ1} . . . {φn−1}en {φn}, where φ0 = emp and φi = Post(ei,φi−1), for all i > 0.

7

2. the safety proof is weakened backwards by computing spatial interpolants, namely for a Hoare
triple {φ}e {ψ}, we define itp(φ,e,ψ) to be a formula such that φ |= itp(φ,e,ψ) and {itp(φ,e,ψ)}e {ψ}
is valid. At this point, the data constraints are not considered, but inductive predicates are
introduced whenever possible, to weaken the strongest postconditions.

3. a recursion-free system of Horn clauses relating the second order variables introduced at the
previous step is inferred. Any solution of this system in the theory TData is used to refine the
interpolants by adding data constraints.

The crux of the interpolation procedure is a bounded abduction procedure used in step 2 above.
Namely, given SL formulae φ,ϕ,ψ, a solution to the bounded abduction problem φ |= ϕ ∗ [] |= ψ is
any SL formula such that φ |= ϕ ∗ A |= ψ holds. The bounded abduction procedure is sound but not
complete, thus the interpolation is not complete either. The most interesting case is e ≡ assume(Π),
which is the only place where inductive predicates are introduced. Given a predicate atom P(E), where
P and E range over a finite set of choices, we define:

intro(P(E),φ,ψ) =

{
P(E)∗A if A is a solution of the bounded abduction φ |= P(E)∗ [] |= ψ

ψ otherwise

Then, considering all possible choices of predicate atoms {Pi(Ei)}ni=1, we define:

itp(φ,assume(Π),ψ) = intro(P1(E1),φ∧Π, intro(P1(E1),φ∧Π, . . . , intro(Pn(En,φ∧Π,ψ) . . .))

This work [2] is a first step towards using abstraction refinement model checking for heap-
manipulating programs. The method suffers however from the lack of performant and complete
decision procedures for SL, in particular procedures for abductive reasoning. In D1.4 we propose
a solution for abduction in quantifier-free SL without inductive predicates. An interesting direction, to
be pursued in the rest of the Vecolib project, is is the inference of inductive predicates from abduction
proofs. Observe that the interpolation procedure from [2] uses a predefined set of inductive predicates
when deriving interpolants, see e.g. the definition of itp(φ,assume(Π),ψ).

References

[1] P. A. Abdulla, M. F. Atig, Y.-F. Chen, L. Holı́k, A. Rezine, P. Rümmer, and J. Stenman. String
Constraints for Verification, pages 150–166. Springer International Publishing, Cham, 2014.

[2] A. Albargouthi, J. Berdine, B. Cook, and Z. Kincaid. Spatial Interpolants, pages 634–660.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[3] W. Craig. Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symbolic Logic,
22(3):250–268, 09 1957.

[4] H. Hojjat and P. Ruemmer. Deciding and interpolating algebraic data types by reduction. Personal
communication.

[5] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures. In Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’06/FSE-14, pages 105–116, 2006.

[6] G. S. Makanin. The problem of solvability of equations in a free semigroup. Mathematics of the
USSR-Sbornik, 32(2):129, 1977.

8

[7] V. Sofronie-Stokkermans. Interpolation in Local Theory Extensions, pages 235–250. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

[8] N. Totla and T. Wies. Complete instantiation-based interpolation. Journal of Automated Reason-
ing, 57(1):37–65, Jun 2016.

9

	Interpolation for High Level Logics
	Interpolation for Strings
	Interpolation by Reduction

	Interpolation for Low Level Logics
	Instantiation-based Interpolation for Arrays and Lists
	Theory of Arrays
	Theory of Lists with Reachability

	Interpolation for Separation Logic

