
Prototypes II
Deliverable D4-5

ANR project VECOLIB

March 2017

Abstract

This deliverable presents three prototypes developed during the Vecolib project: (i) a con-
straint solver for sets and multisets, (ii) an abstract domain library for containers, and (iii) an
implementation of an alternating data automata emptiness checker.

1 A Decision Procedure for a Theory of Sets and Multisets

1.1 Motivation and related work

Several containers are implementations of set or multiset mathematical structures. Therefore, the
specification of these containers are expressed in terms of set and multiset constraints. For example,
an abstract description of an add operation that inserts a value e into a data structure is then:

Model(add(e, t)) = {e} U Model(t)

where Model denotes an abstraction function mapping the data structure values into the set of elements
stored in the value. Other variants of the specification can use multisets or lists instead of sets.

Another way to express the abstraction of the data structure implementing the container is using
a inductively defined refinement relation. For example, the inductive definition of a binary search
tree storing integer values rooted at E may be transformed into a refinement relation by adding to its
parameters the multiset of values M as follows (the logic used is an extension of Separation Logic):

bst(E,M) ::= E = nil∧M = ~� (1)

bst(E,M) ::= ∃L,R,d. E 7→ {(left,L), (right,R), (data,d)} (2)

?bst(L,ML)?bst(R,MR)

∧E , nil∧ML ≤ ~d� < MR∧M = ML⊕~d�⊕MR

The first equation specifies the case of an empty tree, where the root E is null and the parameter M
is an empty bag. The second equation specifies a non null node at location E where the fields left,
right, and data contain as values L, R, resp. d (atom E 7→ {(left,L), (right,R), (data,d)}). The
locations L and R are roots of binary search trees of values in ML resp. MR (atoms bst(L,ML) resp.
bst(R,MR)), disjoint pairwise and from the node at E (due to the use of the separation conjunction
?). The constraint between the multi-sets of values and the value d, ML ≤ ~d� < MR, specifies that all
values in the left sub-tree are less than d and d is strictly less than all values in the right sub-tree.

1



To verify the correctness of the programs using these containers or the implementation of the con-
tainers, the verification tools (analysers or proof systems) need decision procedures for checking the
satisfiability of set and multiset constraints. Notice that, in general, the theory of sets in undecidable.
Hopefully, the fragments used in the specification of container library does not include the full theory
of sets or multisets and need only the unquantified or existentially unquantified fragment with few
operations.

Powerful decision procedures have been proposed and are available for sub-theories of set and
multiset. For example, SMT solvers like CVC4 [1] include support for the theory of finite sets. More-
over, the SMT-lib standard [2] is ready to integrate such a theory (for lists and map also).

The existing decision procedure may be classified into three classes depending on the principle
used:

• by reduction of the basic operations of finite sets and maps to McCarthys theory of arrays, which
is supported by existing solvers, e.g., Z3 [3];

• by reduction to algebraic datatypes that are supported by many solvers, e.g., CVC4;

• by reduction to the boolean algebra with with Presburger arithmetic (BAPA), used for example
is GRASS solver.

1.2 A new solver for set and bag constraints

Motivated by our work on implementation of containers, we considered a sub-theory of set and mul-
tiset constraints which is used to specify refinement relations like bst and may be used for more
general specification, like add above. The multi-set constraints include classical atoms, like multi-set
inclusion or membership, as well as constraints ordering multi-sets with respect to their elements or
constraining the minimum or maximum of a multi-set. It extends the set of constraints allowed by
CVC4 for sets of integers, but it is limited to integer elements.

The decision procedure is based on the rewriting of a multi-set formula ϕ into an equi-satisfiable
formula ϕ̃ in quantifier free logic of linear arithmetics. The latter logic is called QFLIA theory in
SMT-lib format [2] and it is the input theory of very efficient solvers, e.g., CVC4 or Z3. Moreover,
because these solvers support also an extension of this theory with uninterpreted functions, we provide
an alternative rewriting of ϕ into this theory.

We present here only the logic fragment dealt by our solver, i.e., the fragment of quantifier free
logic over bags of integers and linear arithmetics, QFBILIA. The decision procedure is detailed in the
appendix report. The code of this solver is available on github.

We denote by ⊥, > the extremum term such as ∀k ∈ Z,k > ⊥, resp. k < >, we have ⊥ < > [8]. We
donote by Z≺ the set Z∪{⊥,>}. We use the classic notations for operations over Z. Integer constants
are denoted by k, natural ones by n. Let Vint = {a,b,c, . . .} be a finite set of symbols denoting integer
variables, i.e., variables with values in Z. Let Vext = {m,n, p, . . .} be a finite set of symbols denoting
extremum variables, i.e., variables with values in Z≺. We denote by M[Z] the domain of bags over
integers, i.e., the set of functions Z→N. Let Vbag = {x,y,z, . . .} be a finite set of symbols denoting bag
variables, i.e., variables with values in M[Z]. We suppose that Vint, Vext and Vbag are disjoint and we
don’t write explicitly the type (Z, Z≺ orM[Z]) of each variable.

2



Definition 1 A QFBILIA formula F is defined by the following grammar:

F ::= L | F ∨F | F ∧F | ¬F | F⇒ F formula

L ::= Lint | Lbag | Lmix | Lext boolean atom

Lint ::= Tint = Tint | Tint , Tint | Tint < Tint | Tint ≥ Tint

Lext ::= Text = Text | Text , Text | Text < Text | Text ≥ Text

Lbag ::= Tbag = Tbag | Tbag , Tbag | Tbag ⊆ Tbag | Tbag * Tbag |

Tbag < Tbag | Tbag ≥ Tbag

Lmix ::= a ∈ Tbag | a < Tbag | a ∈n Tbag | a <n Tbag |

m ∈ Tbag | m < Tbag | m ∈n Tbag | m <n Tbag

Tint ::= k | a | Tint + Tint | Tint −Tint | integer term

max(Tint,Tint) | min(Tint,Tint) | ite((,F, , )Tint,Tint)

Text ::= k | m | min(Tbag) | max(Tbag) | ite((,F, , )Text,Text) extremum term

Tbag ::= ~� | ~a� | ~m� | x | Tbag∪Tbag | Tbag∩Tbag | bag term

Tbag \Tbag | Tbag]Tbag | ite((,F, , )Tbag,Tbag)

We denote by F the set of formulas in QFBILIA, by Tint the set of integer terms, by Text the set of
extremum terms, and by Tbag the set of multi-set terms.

We provide below some examples of constraints in the QFBILIA fragment.
If an integer a is in a multi-set x, the multi-set ~a� is included in the union of multi-sets x and y:

(a ∈ x)⇒ (~a� ⊆ (x∪ y)) (3)

If 1 is the smallest element of a multi-set x then x is less than y otherwise x is greater than z:(
(min(x) = 1)⇒ (x < y))∧

(
(min(x) , 1)⇒ (x < z)

)
(4)

If the maximum of a multi-set x is 0 then x is the empty bag or the minimum of x is not 0:

(max(x) = 0)⇒
(
(x = ~�)∨ (min(x) , 0)

)
(5)

2 Abstract Domains for Containers

We proposed in the deliverable D2.2 two abstract domains for the analysis of containers. The first
abstract domain, the sequence domain, is designed for the analysis of client programs using position
dependent containers like vectors and lists. The second abstract domain, the multiset domain, is
designed for programs using value dependent containers.

In this deliverable, we report the details of the implementation of these domains as Ocaml modules
that can be used by the abstract interpretation engine of Frama-C.

The analysis of client programs written in C is applied only to programs using the container like
an abstract data types whose operations are given in Tables 1 and 2.
Abstract domain for sequences: We recall from the deliverable D2.2 that an abstract value of this
domain is a constraint of the form:(

A∧E∧
∧

G(y)∈G

∀y. G(y)⇒ U(y)
)
, where

3



Table 1: Operations for position dependent containers

init(c) creates the empty container
free(c) deletes the content of the container
is_empty(c) test for empty container
add_first(c,v) push a value before the first position
add_last(c,v) push a value after the last position
remove_first(c) remove the value at the first position
remove_last(c) remove the value at the last position
first_pos(c) return the first position or -1
next_pos(c,p) return the next position or -1
last_pos(c) return the last position or -1
get_at(c,p) return the value at a valid positon or nil
isin(c,v) returns the position of the value in the container or nil

Table 2: Operations for value dependent containers

init(c) creates the empty container
free(c) deletes the content of the container
is_empty(c) test for empty container
add(c,v) push a value
remove(c,v) remove a value
isin(c,v) return true iff the value is in the container

• A encodes aliasing between containers. For its implementations, we use an union-find data
structure.

• E constrains the non-container variables as well as the container lengths and positions. We
employ the octagon abstract domain from Apron Library [6] of numerical domains.

• the set of universal constraints is implemented by a map from container variables representative
in A (i.e., one variable by alias set) to an array of fixed length indexed by the guard patterns in
G and having as elements numerical abstract values representing the constraint U(y).

To deal with several aliasing relation at a program point, we consider a power set domain, where each
aliasing constraint is mapped to the corresponding existential and universal constraint.
Abstract domain for mutisets: We recall from the deliverable D2.2 that an abstract value of this
domain is a constraint of the form:

A∧E∧
∧
c∈C

∀y ∈ positions(c). U(y) ∧
(∧

i

ti
1#ti

2
)
, where

• A encodes aliasing between containers. For its implementations, we use an union-find data
structure.

• E constrains the non-container variables as well as the container lengths. We employ the oc-
tagon abstract domain from Apron Library [6] of numerical domains.

4



• the set of universal constraints is implemented by a map from container variables representative
in A (i.e., one variable by alias set) to a numerical abstract value (usually in Octagon domain)
representing the constraint U(y).

• the set of constraints ti
1 = ti

2 is represented by a a value in the Polyhedra abstract domain.

• the set of constraints ti
1 ≤ ti

2 is represented by a value in the Octagon abstract domain, where
each subterm of ti

1 is compared with each subterm of ti
2; the multiset terms msc are represented

by one value for every values inside the multiset.

Like for sequences, we built a power-set domain from these values in order to deal with several aliasing
relation at a program point.

3 Alternating Automata Modulo Theories

In the rest of this section we fix an interpretation I and a finite alphabet Σ of input events. Given a
finite set x ⊂ Var of variables of sort Data, let x 7→ DataI be the set of valuations of the variables x
and Σ[x] = Σ× (x 7→ DataI) be the set of data symbols. A data word (word in the sequel) is a finite
sequence (a1, ν1)(a2, ν2) . . . (an, νn) of data symbols, where a1, . . . ,an ∈ Σ and ν1, . . . , νn : x→ DataI are
valuations. We denote by ε the empty sequence, by Σ∗ the set of finite sequences of input events and
by Σ[x]∗ the set of data words over x.

This definition generalizes the classical notion of words from a finite alphabet to the possibly
infinite alphabet Σ[x]. Clearly, when DataI is sufficiently large or infinite, we can map the elements of
Σ into designated elements of DataI and use a special variable to encode the input events. However,
keeping Σ explicit in the following simplifies several technical points below, without cluttering the
presentation.

Given sets of variables b,x ⊂ Var of sort Bool and Data, respectively, we denote by Form(b,x)
the set of formulae φ such that FVBool(φ) ⊆ b and FVData(φ) ⊆ x. By Form+(b,x) we denote the set of
formulae from Form(b,x) in which each boolean variable occurs under an even number of negations.

An alternating data automaton (ADA or automaton in the sequel) is a tuple A = 〈x,Q, ι,F,∆〉,
where:
• x ⊂ Var is a finite set of variables of sort Data,
• Q ⊂ Var is a finite set of variables of sort Bool (states),
• ι ∈ Form+(Q,∅) is the initial configuration,
• F ⊆ Q is a set of final states, and
• ∆ : Q×Σ→ Form+(Q,x∪x) is a transition function,

where x = {x | x ∈ x}. In each formula ∆(q,a) describing a transition rule, the variables x track the
previous and x the current values of the variables ofA. Observe that the initial values of the variables
are left unconstrained, as the initial configuration does not contain free data variables. The size of A
is defined as |A| = |ι|+

∑
(q,a)∈Q×Σ |∆(q,a)|.

q0

q1 q2

a
x=0

ꓥy=0

a
x= y+1

ꓥy= x+1

q3
b

 x≥ y
q4

a
x> x ꓥy> y

b
 x> y

Figure 1: Alternating Data Automaton Example

5



Example Figure 1 depicts an ADA with input alphabet Σ = {a,b}, variables x = {x,y}, states Q =

{q0,q1,q2,q3,q4}, initial configuration q0, final states F = {q3,q4} and transitions:

∆(q0,a) ≡ q1∧q2∧ x ≈ 0∧ y ≈ 0
∆(q1,a) ≡ q1∧q3∧ x ≈ y + 1∧ y ≈ x + 1
∆(q1,b) ≡ q3∧ x ≥ y
∆(q2,a) ≡ q2∧ x > x∧ y > y
∆(q2,b) ≡ q4∧ x > y

The missing rules, such as ∆(q0,b), are assumed to be ⊥. Rules ∆(q0,a) and ∆(q1,a) are universal and
there are no existential nondeterministic rules. Rules ∆(q1,a) and ∆(q2,a) compare past (x,y) with
present (x,y) values, ∆(q0,a) constrains the present and ∆(q1,b), ∆(q2,b) the past values, respectively.
�

Formally, let xk = {xk | x ∈ x}, for any k ≥ 0, be a set of time-stamped variables. For an in-
put event a ∈ Σ and a formula φ, we write ∆(φ,a) (respectively ∆k(φ,a)) for the formula obtained
from φ by simultaneously replacing each state q ∈ FVBool(φ) by the formula ∆(q,a) (respectively
∆(q,a)[xk/x,xk+1/x], for k ≥ 0). Given a word w = (a1, ν1)(a2, ν2) . . . (an, νn), the run of A over w
is the sequence of formulae:

φ0(Q)⇒ φ1(Q,x0∪x1)⇒ . . .⇒ φn(Q,x0∪ . . .∪xn)

where φ0 ≡ ι and, for all k ∈ [1,n], we have φk ≡∆k(φk−1,ak). Next, we slightly abuse notation and write
∆(ι,a1, . . . ,an) for the formula φn(x0, . . . ,xn) above. We say that A accepts w iff I, ν |= ∆(ι,a1, . . . ,an),
for some valuation ν that maps: (1) each x ∈ xk to νk(x), for all k ∈ [1,n], (2) each q ∈ FVBool(φn)∩F
to > and (3) each q ∈ FVBool(φn) \ F to ⊥. The language of A is the set L(A) of words from Σ[x]∗

accepted byA.
Example The following sequence is a non-accepting run of the ADA from Figure 1 on the word
(a, 〈0,0〉), (a, 〈1,1〉), (b, 〈2,1〉), where DataI = Z and the function symbols have standard arithmetic
interpretation:

q0
(a,〈0,0〉)
=⇒ q1∧q2∧ x1 ≈ 0∧ y1 ≈ 0

(a,〈1,1〉)
=⇒

q1∧q2∧ x2 ≈ y1 + 1∧ y2 ≈ x1 + 1︸                                     ︷︷                                     ︸
q1

∧ q2∧ x2 > x1∧ y2 > y1︸                     ︷︷                     ︸
q2

∧ x1 ≈ 0∧ y1 ≈ 0
(b,〈2,1〉)
=⇒ q3∧ x2 ≥ y2︸        ︷︷        ︸

q1

∧q4∧ x2 > y2︸        ︷︷        ︸
q2

∧x2 ≈ y1 + 1

∧ y2 ≈ x1 + 1∧q4∧ x2 > y2︸        ︷︷        ︸
q2

∧x2 > x1∧ y2 > y1∧ x1 ≈ 0∧ y1 ≈ 0 �

Here we tackle the following problems:
1. boolean closure: given automata A1 and A2, both with the same set of variables x, do there

exist automata A∪, A∩ and A1 such that L(A∪) = A1 ∪A2, L(A∩) = A1 ∩A2 and L(A1) =

Σ[x]∗ \L(A1) ?
2. emptiness: given an automatonA, is L(A) = ∅ ?
The first problem has a positive answer. Moreover, the construction of boolean closure automata

is effective and takes linear time in the size of the input. Given a set Q of boolean variables and a set x
of variables of sort Data, for a formula φ ∈ Form+(Q,x), with no negated occurrences of the boolean

6



variables, we define the formula φ ∈ Form+(Q,x) recursively on the structure of φ:

φ1∨φ2 ≡ φ1∧φ2 φ1∧φ2 ≡ φ1∨φ2

¬φ ≡ ¬φ if φ not atom φ ≡ φ if φ ∈ Q
φ ≡ ¬φ if φ < Q atom

We have |φ| = |φ|, for every formula φ ∈ Form+(Q,x).
In the following let Ai = 〈x,Qi, ιi,Fi,∆i〉, for i = 1,2, where w.l.o.g. we assume that Q1∩Q2 = ∅.

We define:
A∪ = 〈x,Q1∪Q2, ι1∨ ι2,F1∪F2,∆1∪∆2〉

A∩ = 〈x,Q1∪Q2, ι1∧ ι2,F1∪F2,∆1∪∆2〉

A1 = 〈x,Q1, ι1,Q1 \F1,∆1〉

where ∆1(q,a) ≡ ∆1(q,a), for all q ∈ Q1 and a ∈ Σ. The following lemma shows the correctness of the
above definitions:

Lemma 1 Given automataAi = 〈x,Qi, ιi,Fi,∆i〉, for i = 1,2, such that Q1∩Q2 = ∅, we have L(A∪) =

L(A1)∪L(A2), L(A∩) = L(A1)∩L(A2) and L(A1) = Σ[x]∗ \L(A1).

Proof: See [5]. �
On the other hand, the emptiness problem is undecidable. To this end, we provide a semi-algorithm

based on abstraction refinement, given below. We consider a total alphabetical order ≺ on Σ and lift it
to the total lexicographical order ≺∗ on Σ∗. A node n ∈ N is covered if (n, p) ∈ C or it has an ancestor m
such that (m, p) ∈ C, for some p ∈ N. A node n is closed if it is covered, or Λ(n) 6|= Λ(m) for all m ∈ N
such that λ(m) ≺∗ λ(n).

The execution of Algorithm 1 consists of three phases1: close, refine and expand. Let n be a node
removed from the worklist at line 4. If AccA(λ(n)) is satisfiable, the counterexample λ(n) is feasible,
in which case a model of AccA(λ(n)) is obtained and a word w ∈ L(A) is returned. Otherwise, λ(n) is a
spurious counterexample and the procedure enters the refinement phase (lines 11-18). The interpolant
for Θ(λ(n)) is used to strenghten the labels of all the ancestors of n, by conjoining the formulae of the
interpolant to the existing labels.

In this process, the nodes on the path between r and n, including n, might become eligible for
coverage, therefore we attempt to close each ancestor of n that is impacted by the refinement (line 18).
Observe that, in this case the call to Close must uncover each node which is covered by a successor
of n (line 4 of the Close function). This is required because, due to the over-approximation of the sets
of reachable configurations, the covering relation is not transitive, as explained in [7]. If Close adds a
covering edge (ni,m) to C, it does not have to be called for the successors of ni on this path, which is
handled via the boolean flag b.

Finally, if n is still uncovered (it has not been previously covered during the refinement phase)
we expand n (lines 20-26) by creating a new node for each successor s via the input event a ∈ Σ and
inserting it into the worklist.
Example We show the execution of Algorithm 1 on the automaton from Figure 1. Initially, the pro-
cedure fires the sequence a, whose endpoint is labeled with >, in Figure 2 (a). Since this node is
uncovered, we check the spuriousness of the counterexample a and refine the label of the node to
q1. Since the node is still uncovered, two successors, labeled with > are computed, correspond-
ing to the sequences aa and ab, in Figure 2 (b). The spuriousness check for aa yields the interpolant

1Corresponding to the Close, Refine and Expand in [7].

7



Algorithm 1 Impact for ADA Emptiness
input: an ADAA = 〈x,Q, ι,F,∆〉 over the alphabet Σ of input events
output: true if L(A) = ∅ and a data word w ∈ L(A) otherwise

1: let T = 〈N,E,r,Λ,R,T,C〉 be an ART
2: initially N = E = T = C = ∅, Λ = {(r, ι)}, R = FVBool(ι[Q0/Q]), WorkList = {r}

3: while WorkList , ∅ do
4: dequeue n from WorkList
5: N← N ∪{n}
6: let (r,a1,n1), (n1,a2,n2), . . . , (nk−1,ak ,n) be the path from r to n
7: if AccA(a1 . . .ak) is satisfiable then . counterexample is feasible
8: get model (β,ν1, . . . , νk) of AccA(λ(n))
9: return w = (a1, ν1) . . . (ak , νk) . w ∈ L(A) by construction

10: else . spurious counterexample
11: let 〈>, I0, . . . , Ik ,⊥〉 be an interpolant for Θ(a1 . . .ak)
12: b← false
13: for i = 0, . . . ,k do
14: if Λ(ni) 6|= Ii then
15: C← C \ {(m,ni) ∈ C | m ∈ N}
16: Λ(ni)← Λ(ni)∧ Ii . strenghten the label of ni
17: if ¬b then
18: b← Close(ni)
19: if n is not covered then
20: for a ∈ Σ do . expand n
21: let s be a fresh node and e = (n,a, s) be a new edge
22: E← E∪{e}
23: Λ← Λ∪{(s,>)}
24: T ← T ∪{(e, θk)}
25: R← R∪{(s,

⋃
q∈R(n) FVBool(∆(q,a)))}

26: enqueue s into WorkList
27: return true
1: function Close(x) returns Bool
2: for y ∈ N such that λ(y) ≺∗ λ(x) do
3: if Λ(x) |= Λ(y) then
4: C← (C \ {(p,q) ∈ C | q is x or a successor of x})∪{(x,y)}
5: return true
6: return false

〈q0, x ≤ 0∧q2∧ y ≥ 0〉which strenghtens the label of the endpoint of a from q1 to q1∧ x≤ 0∧q2∧y≥ 0.
The sequence ab is also found to be spurious, which changes the label of its endpoint from > to ⊥, and
also covers it (depicted with a dashed edge). Since the endpoint of aa is not covered, it is expanded to
aaa and aab, in Figure 2 (c). Both sequences aaa and aab are found to be spurious, and the enpoint
of aab, whose label has changed from > to ⊥, is now covered. In the process, the label of aa has also
changed from q1 to q1∧y > x−1∧q2, due to the strenghtening with the interpolant from aab. Finally,
the only uncovered node aaa is expanded to aaaa and aaab, both found to be spurious, in Figure 3.
The refinement of aaab causes the label of aaa to change from q1 to q1∧ y > x−1∧q2 and this node
is now covered by aa. Since its successors are also covered, there are no uncovered nodes and the
procedure returns true. �

Theorem 1 Given an automaton A, such that L(A) , ∅, Algorithm 1 terminates and returns a word
w ∈ L(A). If Algorithm 1 terminates reporting true, then L(A) = ∅.

Proof: See [5]. �
We have implemented Algorithm 1 in a prototype tool that uses the Z3 SMT solver2 for the satis-

fiability queries and interpolant generation, in the theory of linear integer arithmetic (LIA) combined
with booleans. The implementation is available at: https://github.com/cathiec/AltImpact.

2https://github.com/Z3Prover/z3

8

https://github.com/cathiec/AltImpact
https://github.com/Z3Prover/z3


q0
R={q0}

a ⊤
R={q1,q2}q0

[0]→q1
[1]ꓥq2

[1]ꓥx[1]=0ꓥy[1]=0

refined
q1

(a)

q0

R={q0}

a q1 

R={q1,q2}q0
[0]→q1

[1]ꓥq2
[1]ꓥx[1]=0ꓥy[1]=0

refined
⊥

⊤
R={q1,q2}

a

(q1
[1]→q3

[2]ꓥx[1]≥y[1])
ꓥ (q2

[1]→q4
[2]ꓥx[1]>y[1])

⊤
R={q3,q4}

b

refined
q1

refined
q1ꓥx≤0ꓥq2ꓥy≥0

(q1
[1]→q1

[2]ꓥq2
[2]ꓥ

x[2]=y[1]+1ꓥy[2]=x[1]+1)
ꓥ (q2

[1]→q2
[2]ꓥ

x[2]>x[1]ꓥy[2]>y[1])

q0

R={q0}

a q1ꓥx≤0ꓥq2ꓥy≥0
R={q1,q2}q0

[0]→q1
[1]ꓥq2

[1]ꓥx[1]=0ꓥy[1]=0

(q1
[1]→q1

[2]ꓥq2
[2]ꓥ

x[2]=y[1]+1ꓥy[2]=x[1]+1)
ꓥ (q2

[1]→q2
[2]ꓥ

x[2]>x[1]ꓥy[2]>y[1])

q1 

R={q1,q2}

a

(q1
[1]→q3

[2]ꓥx[1]≥y[1])
ꓥ (q2

[1]→q4
[2]ꓥx[1]>y[1])

⊥
R={q3,q4}

b

⊤
R={q3,q4}

⊤
R={q1,q2}

b
(q1

[2]→q3
[3]ꓥx[2]≥y[2])

ꓥ (q2
[2]→q4

[3]ꓥx[2]>y[2])

a
(q1

[2]→q1
[3]ꓥq2

[3]ꓥx[3]=y[2]+1ꓥy[3]=x[2]+1)
ꓥ (q2

[2]→q2
[3]ꓥx[3]>x[2]ꓥy[3]>y[2])

refined
q1ꓥy>x-1ꓥq2

refined
⊥

refined
q1

(b) (c)

Figure 2: Proving Emptiness of the Automaton from Fig. 1 by Algorithm 1 (1/2)

We compared this algorithm with a previous implementation of a trace inclusion procedure, called
Includer3, that uses on-the-fly determinisation and lazy predicate abstraction with interpolant-based
refinement [4] in the LIA theory, without booleans.

References

[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli. CVC4. In Computer Aided Verification, LNCS, pages 171–177. Springer, 2011.

[2] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2010.

[3] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, pages 337–340. Springer, 2008.

[4] R. Iosif, A. Rogalewicz, and T. Vojnar. Abstraction Refinement and Antichains for Trace Inclusion
of Infinite State Systems, pages 71–89. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[5] R. Iosif and X. Xu. The impact of alternation. CoRR, abs/1705.05606, 2017.

[6] B. Jeannet and A. Miné. APRON: A library of numerical abstract domains for static analysis. In
Computer Aided Verification, CAV’2009, volume 5643 of LNCS, pages 661–667, 2009. http:
//apron.cri.ensmp.fr/library/.

[7] K. L. McMillan. Lazy abstraction with interpolants. In Proc. of CAV’06, volume 4144 of LNCS.
Springer, 2006.

[8] R. Piskac, P. Suter, and V. Kuncak. On decision procedures for ordered collections. Technical
report, 2010.

3http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/

9

http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/


q0

R={q0}

a q1ꓥx≤0ꓥq2ꓥy≥0
R={q1,q2}q0

[0]→q1
[1]ꓥq2

[1]ꓥx[1]=0ꓥy[1]=0

(q1
[1]→q1

[2]ꓥq2
[2]ꓥ

x[2]=y[1]+1ꓥy[2]=x[1]+1)
ꓥ (q2

[1]→q2
[2]ꓥ

x[2]>x[1]ꓥy[2]>y[1])

q1ꓥy>x-1ꓥq2

R={q1,q2}

a

(q1
[1]→q3

[2]ꓥx[1]≥y[1])
ꓥ (q2

[1]→q4
[2]ꓥx[1]>y[1])

⊥
R={q3,q4}

b

⊥
R={q3,q4}

q1 

R={q1,q2}

b
(q1

[2]→q3
[3]ꓥx[2]≥y[2])

ꓥ (q2
[2]→q4

[3]ꓥx[2]>y[2])

a

(q1
[2]→q1

[3]ꓥq2
[3]

ꓥx[3]=y[2]+1ꓥy[3]=x[2]+1)
ꓥ (q2

[2]→q2
[3]

ꓥx[3]>x[2]ꓥy[3]>y[2])

⊤
R={q3,q4}

⊤
R={q1,q2}

(q1
[3]→q1

[4]ꓥq2
[4]ꓥx[4]=y[3]+1ꓥy[4]=x[3]+1)

ꓥ (q2
[3]→q2

[4]ꓥx[4]>x[3]ꓥy[4]>y[3])

b

a

(q1
[3]→q3

[4]ꓥx[3]≥y[3])
ꓥ (q2

[3]→q4
[4]ꓥx[3]>y[3])

refined
⊥

refined
q1

refined
q1ꓥy>x-1ꓥq2

Figure 3: Proving Emptiness of the Automaton from Fig. 1 by Algorithm 1 (2/2)

10


	A Decision Procedure for a Theory of Sets and Multisets
	Motivation and related work
	A new solver for set and bag constraints

	Abstract Domains for Containers
	Alternating Automata Modulo Theories

