
From Low-Level to High-Level Programs

Deliverable D3-3

ANR project VECOLIB

September 2017

Abstract

The code used in Ada or C implementations of standard libraries of containers includes
complex data structures where the program heap is explicitly managed using pointers and
dynamic allocation. Those containers are then used by client code, in an abstract way.
In order to properly analyze such programs, it is important to be able to bridge the gap
between the low- and high-level view of the containers’ implementations.

This deliverable reports on two approaches developed in the Vecolib project to tackle
this challenge. The first approach is implemented in Frama-C. Customizable memory ab-
stractions are provided, that hide the notion of pointers from abstrat domains. Aggregates
(structs and arrays) are also flattened – and abstracted for big arrays.

1 Introduction

The static analyser of Frama-C, Value [2] as well as its new version Eva [1] are able to deal
with such view due to a specific memory model, where the contents of locations in memory
are seen as sequences of bytes and pointers are abstracted in both integers and addresses.
During the Vecolib project, a customizable memory abstraction has been added, which is
used to hide from abstract domains the complexities brought by pointers. Instead, they only
need to understand cells, as explained in Section 2.1.

1.1 Related works

2 High-level abstractions of memory

2.1 Customizable memory abstractions

Pointers are ubiquitous in C. Yet, they are a challenge to usual relational domains (e.g.
octagons or polyhedra), which can only relate variables. Aggregates (structs and unions)
pose similar problems.

Memory abstractions [4, 3] are generally used to bridge this gap. They abstract memory
locations by a set of abstract variables (usually). However, such memory abstractions are
generally fixed, and part of the abstract interpretation engine. In Eva, each abstract domain
is instead free to choose its own abstraction, resulting in an increased expressivity. For
convenience, Eva however supplies customizable memory abstractions, to ease the writing of
new analysis domains.

1

module type Value = sig

type t

val top : t

val join : t -> t -> t

val widen : t -> t -> t

val is_included : t -> t -> bool

(** This function must return [true] if the given variable should be

tracked by the domain. All untracked variables are implicitely

mapped to [V.top]. *)

val track_variable: Cil_types.varinfo -> bool

end

module Make_Memory (Value: Value) : sig

type t

type value = Value.t

val top: t

(** The top abstraction, which maps all variables to {!V.top}. *)

val join: t -> t -> t

val widen: t -> t -> t

val is_included: t -> t -> bool

(** [add loc typ v state] binds [loc] to [v] in state. If [typ] does

not match the effective type of the location pointed, [V.top] is

bound instead. This function automatically handles the case where

[loc] abstracts multiple locations, or when some locations are not

tracked by the domain. *)

val add: Precise_locs.precise_location -> Cil_types.typ -> value -> t -> t

(** [find loc typ state] returns the join of the abstract values stored

in the locations abstracted to by [loc] in [state], assuming the

result has type [typ]. When [loc] includes untracked locations, or when

[typ] does not match the type of the locations in [loc], the

result is approximated. *)

val find: Precise_locs.precise_location -> Cil_types.typ -> t -> value

(** [remove loc state] drops all information on the locations pointed to

by [loc] from [state]. *)

val remove: Precise_locs.precise_location -> t -> t

(* [...] *)

end

Figure 1: OCaml signature for Eva customizable memory abstractions

2

Figure 1 shows the signature Value that must be supplied in order to obtain a memory
abstraction. It consists of two parts:

1. An OCaml type t that abstracts values (integers, floating-point values, pointers),
equipped with a join-lattice structure, plus a widening operation.

2. A function track_variable that decides whether the domain is interested in a certain
variable. Untracked variables will behave as if mapped to the imprecise value top, but
for efficiency reasons they will not appear in the OCaml datastructure at all.

The OCaml functor Make_Memory returns a memory abstraction that maps all tracked
variables to an abstract value. The result of this functor can then be used to implement most
of the memory-related operations required by an Eva domain. For example, the function
add can be used to implement the abstract operation for assignment. The argument of type
Precise_locs.precise_location (which is the type of abstract locations within Eva) is
automatically converted into a set of abstract variables.

This memory abstraction will be part of Frama-C Sulfur.

2.1.1 Extension to aggregates

Currently, the memory abstraction presented above is limited to scalar variables. We are
experimenting with an extension to aggregates types, namely structs and arrays. The idea
would be to represent each individual field by an abstract variable, which we call a cell.
The function track_variable would be generalized into a function track_cell. There are
however two difficulties in doing so:

1. By using pointer arithmetics to access a memory region with an improper type, memory
accesses can refer to only parts of a cell, or worse overlap multiple cells. Although some
of the code patterns are forbidden by so-called C strict aliasing rules, many programs use
GCC option -fnostrict-aliasing and nevertheless perform them. We give examples
below.

int x = 1;

// Accesses part of x. Valid because the type used is char

char *y = *(((char*) &x)+1);

// Accesses part of x. Invalid

short *z = *(((short*) &x)+1);

int t[3] = {1, 2, 4};

// Accesses parts of t[0] and t[1]. Invalid pointer arithmetics

int w = *((int *)(((char *)&t)+2));

Our cell-based memory abstraction automatically handles such examples, by warning
when an access to a cell is partial. In those cases, the memory abstraction performs an
imprecise read or update operation.

2. Big arrays can lead to the generation of an unwieldy number of cells, which will in turn
degrade the performance of e.g. relational numeric domains. For example, octagons
have a cubic complexity, while polyhedra are exponential in the number of variables. It

3

is thus of particular importance to smash those arrays, into a single summary cell. Such
summary cells are special, since the information on their contents can only grow. It is
indeed impossible to learn a newer, more precise information. This will be automatically
handled by the memory abstraction.

We expect this extension of our memory abstraction to also be part of Frama-C Sulfur.

References

[1] D. Bühler. Structuring an Abstract Interpreter through Value and State Abstractions: EVA
an Evolved Value Analysis for Frama-C. PhD thesis, University of Rennes, 2017.

[2] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C: A
software analysis perspective. Formal Asp. Comput., 27(3):573–609, 2015.

[3] V. Laporte. Vrification danalyses statiques pour langages de bas niveau. PhD thesis,
Universit de Rennes 1, 2012.

[4] A. Miné. Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In LCTES, pages 54–63. ACM, 2006.

4

	Introduction
	Related works

	High-level abstractions of memory
	Customizable memory abstractions
	Extension to aggregates

