
A Verified Implementation of the Bounded List
Container

Raphaël Cauderlier and Mihaela Sighireanu

IRIF, University Paris Diderot and CNRS, Paris, France
firstname.name@irif.fr

Abstract. This paper contributes to the trend of providing fully veri-
fied container libraries. We consider an implementation of the bounded
doubly linked list container which manages the list in a fixed size, heap
allocated array. The container provides constant time methods to update
the list by adding, deleting, and changing elements, as well as cursors for
list traversal and access to elements. The library is implemented in C, but
we wrote the code and its specification by imitating the ones provided
by GNAT for the standard library of Ada 2012. The proof of functional
correctness is done using VeriFast, which provides an auto-active veri-
fication environment for Separation Logic extended with algebraic data
types. The specifications proved entail the contracts of the Ada library
and include new features. The verification method we used employs a
precise algebraic model of the data structure and we show that it facil-
itates the verification and captures entirely the library contracts. This
case study may be of interest for other verification platforms, thus we
highlight the intricate points of its proof.

1 Introduction

Standard libraries of programming languages provide efficient implementations
for common data containers. The details of these implementations are abstracted
away by generic interfaces which are specified in terms of well understood math-
ematical structures such as sets, multisets, sequences, and partial functions. The
intensive use of container libraries makes important their formal verification.

However, the functional correctness of these libraries is challenging to verify
for several reasons. Firstly, their implementation is highly optimized: it employs
complex data structures and manages the memory directly through pointers/ref-
erences or specific memory allocators. Secondly, the specification of containers is
rarely formal. Notable exceptions are, e.g., Eiffel [27] and SPARK [10]; recently,
[1] provided a specification of the Ada 2012 container library. The formal speci-
fications are very important when the library employs constructs that are out of
the scope of the underlying mathematical structure. A typical example of such
constructs are iterators. For example, Java iterators are generic and can exist
independently of the container; Ada 2012 iterators, called cursors, are part of
the container. Thirdly, the specification of the link between the low level im-
plementation and the mathematical specification requires hybrid logics that are

2

able to capture both low level and high level specifications of the container. For
verification purposes, these logics shall be supported by efficient solvers.

This work focuses on the functional verification of the bounded doubly linked
lists container, which is a GNAT implementation [11] of the doubly linked lists
container in the standard library of Ada 2012 [1]. This container is currently
used by client programs [2] written in SPARK [21], a subset of the Ada targeted
at safety- and security-critical applications. The lists have bounded capacity,
fixed at the list creation, and thus avoid dynamic memory allocation during
the container use. This feature is required in critical code, where it is necessary
to supply formal guarantees on the maximal amount of memory used by the
running code.

The container implementation is original compared with other implementa-
tions of linked lists inside arrays. It employs an array of fixed size in which it
manages (i) the occupied array cells inside a doubly linked list representing the
content of the container and (ii) a singly linked list of free array cells. The oper-
ations provided are classic for lists. A special mention for the preservation of the
amortized constant time complexity by the implementation of insert and delete
operations. The list elements are designated using (bi-directional) cursors, also
used to traverse the list. In conclusion, the code of this container was designed to
ensure efficiency of operations and not its verification, and therefore it provides
a realistic test for the automated verification.

Thanks to the introduction of formal contracts in Ada 2012, the container has
been fully specified recently based on a previous specification in Why3 by Dross
et al. [10]. The specification given is “meant to facilitate the formal verification
of code using this container” [11], and it is presently used to prove the clients
written in SPARK. The container is specified in terms of a model representing
a functional implementation of bounded vectors, also written in Ada. This kind
of specification is a substitute for the algebraic data types, not supported by
Ada. It has the advantage of being executable, which enables the run-time veri-
fication of the implementation. An important feature of these contracts is their
completeness [26] with respect to the models considered for the container and the
cursors. This aspect is a challenge for the state of the art verification tools. The
formal verification of these contracts can not be done by GNATprove, the de-
ductive verification environment for SPARK, because the code employs language
constructs out of its scope.

The goal of our study is to apply on-the-shelf verification tools to prove
the full functional correctness and the memory safety for this implementation,
without simplifying the code or the specification. To open the case study to more
verification platforms, we choose to write this library in C, because C may capture
all the features of the container implementation, except the strong typing and the
generic types of Ada. The C implementation mimics the Ada code. The functional
specification of the C code translates the container contracts from Ada based on
(i) representation predicates that relate heap regions with algebraic models using
inductively defined predicates, (ii) algebraic lists and maps, and (iii) inductively
defined predicates and functions on the algebraic models. The logic including

3

these features is undecidable in general. Therefore, we have to help the prover to
obtain push button verification. The auto-active verification [19] environments
are helpful in such tasks.

The invariant properties of the implementation and the features exhibited by
the specification guided us towards deductive verification platforms that support
Separation Logic [30] (SL) and algebraic data types. Consequently, we choose the
VeriFast [14] auto-active verification tool, which provides means for (a) the spec-
ification of representation predicates in the style introduced for SL by O’Hearn
et al. [24], (b) the definition of polymorphic algebraic data types, predicates and
functions, and (c) the definition of user lemmas to help verification. Using these
features, we employ a verification methodology based on the refinement of the
original specification. The refined specification not only captures accurately the
contracts, but also eases the deductive verification process, i.e., the writing of
lemmas. For example, we employ a style of writing representation predicates in
SL that leads to simpler lemmas for list segments composition.

To summarize, we verified the C implementation of bounded doubly linked
list container against its functional specification. In addition, we verified the
safety of memory accesses due to use of Separation Logic. For this, we annotated
the C code and we extended the library for algebraic polymorphic lists of VeriFast
with new predicates and lemmas. These logic development may be used in other
verification tools based on induction. The annotated code and the sources used by
its proof are available at http://vecolib.imag.fr/index.php/Deliverables.

The paper begins by presenting the case study in Section 2. Then, we high-
light in Section 3 the main ingredients of the verification approach used and the
challenges we faced up. Section 4 presents the experimental results. We compare
this work with other approaches for verification of containers and complex data
structures in Section 5.

2 Dynamic Bounded Doubly-Linked Lists

This section presents the container code and its functional specification.

2.1 Overview

Implementation: The code is written in a very simple fragment of C, which
may be easily translated to most imperative programming languages. It uses
records and pointers to records, dynamic memory allocation, classic accesses to
record fields and array elements, basic integer type and its operations. Like in the
original code, the container does not support concurrency and has been written
to obtain efficient operations and not to ease the verification. The container
elements are designated through cursors, which represent valid positions in the
list; they may be moved forward and backward in the list. The container interface
includes 30 operations including classic operations (creation, copy, size access,
clearing and deallocation, equality test, searching) and a rich set of utilities
(inserting or deleting bunches of elements at some position, searching from the
end, merging lists, swapping elements or links, reversing in place, sorting).

http://vecolib.imag.fr/index.php/Deliverables

4

Specification: The functional specification is model based [27]. Two mathematical
models are used: algebraic lists (i.e., finite sequences) to represent the content of
the list and finite partial maps to model the set of valid cursors (see Section 2.3
for details). The contracts employ operations on these mathematical models that
are beyond their classic usage. For example, the test of inclusion between the set
of elements of two sequences, or the test that the domain of a partial mapping
has been truncated from a given value. For this reason, we enriched the library
of mathematical models provided by our prover with such operations and the
corresponding axiomatizations (see Section 3.2).

An important feature of our functional specification is the usage of a re-
fined abstraction for the list to ease the proof that the operations satisfy their
contracts. We introduce a precise model for the list, which is an algebraic list
of abstract cells, storing container values together with the links between the
cells. This precise model is mapped to the abstract model (sequence of values)
using a catamorphic mapping [34], called model. Moreover, the precise model is
used to compute the (abstract) model of cursors, based on a catamorphic map-
ping, called positions. The use of the precise model facilitates the verification
effort for proving that implementations of operations satisfy their contracts (see
Section 3.1).

The functional specification is complete in the sense given by [26]: the post-
condition of each operation uniquely defines its result and the side effect on the
model of the container and of its cursors. However, it does not check for memory
overflow at the container creation.

For the syntax of specifications, we employ in the following the specifica-
tion language of VeriFast, which extends the normalized specification language
for C, ACSL [3], with shorthand notations and operators for Separation Logic.
Therefore, we employ ‘?’ to introduce existentially quantified variables, ‘&*&’ for
both classic conjunction and the separating one, ‘|->’ for the points-to opera-
tor that defines the content (right operand) of an allocated memory cell (left
operand), and emp for the empty heap. Algebraic lists of VeriFast have type list

and are polymorphic; the operations on lists have classic names. The definition
of new logic types (and functions) is introduced by the keyword inductive (resp.
fixpoint).

2.2 List container

List elements The data stored in the list container is typed by an abstract type
Element_Type, defined as an alias to the integer type in our code. This coding is
sound for the proof of the functional correctness of the container implementation
because the container assumes only that values of Element_Type may be compared
for equality.

List cell Also called node in the following, the list cell encapsulates the container
element together with links to the next and previous cell in the list. A node is
also an element of the array allocated for the container.

5

1 inductive pnode = pnode(int , int , Element_Type);
2 fixpoint int pprev(pnode pn) {switch(n) {case pnode(pp, pn , pe): return pp;}}
3 fixpoint int pnext(pnode pn) ...
4 fixpoint int pelem(pnode pn) ...
5

6 predicate node(struct Node_Type* n, int capacity; pnode pn) =
7 malloc_block_Node_Type(n) &*&
8 n->prev|->?iprev &*& n->next|->?inext &*&
9 n->elem|->?pelem &*&

10 inext >=0 &*& inext <= capacity &*&
11 pn== pnode(iprev , inext , pelem);
12

13 fixpoint bool is_free(pnode n) { return pprev(n)==-1; }
14 predicate free_node(struct Node_Type* n, int capacity; int inext) =
15 node(n, capacity , ?pn) &*&
16 is_free(pn)== true &*& inext== pnext(pn);
17

18 fixpoint bool is_occupied(pnode n) { return pprev(n)>=0; }
19 predicate occupied_node(struct Node_Type* n, int capacity; pnode pn) =
20 node(n, capacity , pn) &*& is_occupied(pn)== true;
21

22 predicate bdll(struct Node_Type * tab , int capacity ,
23 int iprev , int ifrom , int ilast , int ito; list <pnode > m) =
24 ifrom==ito ?
25 (iprev==ilast &*& values ==nil <pnode >)
26 : (occupied_node(tab+ifrom , capacity , ?p) &*&
27 pprev(p)== iprev &*&
28 bdll(tab , capacity , ifrom , pnext(p), ilast , ito , ?mtl) &*&
29 m==cons(p, mtl));
30

31 predicate uninit_free(struct Node_Type* tab , int capacity ,
32 int ifrom , int ito; list <int > model) =
33 ifrom==ito ? model ==nil
34 : (ifrom <ito &*& free_node(tab+ifrom , capacity , 0) &*&
35 uninit_free(tab , capacity , ifrom+1, ito , ?mtl) &*&
36 model==cons(ifrom , mtl));
37

38 predicate init_free(struct Node_Type* tab , int capacity ,
39 int ifrom , int ito; list <int > model) =
40 ifrom==ito ? model ==nil
41 : (ifrom >0 &*& free_node(tab+ifrom , capacity , ?inext) &*&
42 init_free(tab , capacity , inext , ito , ?mtl) &*&
43 model==cons(ifrom , mtl));
44

45 predicate free_nodes(struct Node_Type* tab , int cap ,
46 int free , int size; list <int > fmodel) =
47 free >=0 ? (init_free(tab , cap , free , 0, ?M) &*&
48 fmodel ==M &*& length(M)+size==cap)
49 : (uninit_free(tab , cap , abs(free), cap+1, ?M) &*&
50 fmodel ==M &*& length(M)+size==cap);
51

52 predicate list_inv(struct List* L;
53 struct Node_Type* tab , int cap ,
54 int free , list <int > free_model ,
55 int head , int last , list <pnode > m) =
56 malloc_block_List(L) &*&
57 L->nodes|->tab &*& L->capacity|->cap &*& cap > 0 &*&
58 malloc_block(tab , sizeof(struct Node_Type)*(cap +1)) &*&
59 node(tab , cap , pnode(-1,0,_)) &*&
60 L->first|->head &*& head >=0 &*& head <=cap &*&
61 L->last|->last &*& last >=0 &*&
62 bdll(tab ,cap ,0,head ,last ,0,m) &*& L->size|->length(vs) &*&
63 L->free|->free &*& free <=cap &*&
64 free_nodes(tab ,free ,length(m),cap ,free_model);

Fig. 1. Logic definitions for the BDLL container

6

struct Node_Type { int prev; int next; Element_Type elem; };

The values of the C type are abstracted by the ghost type pnode, defined at line
1 in Figure 1, which records the values of node fields. The logic functions pprev,
pnext, and pelem to access first, second, resp. third component of a purenode

value.
The predicate node (line 6 in Figure 1) relates a node n allocated in the heap

with its model pn. The allocation property is expressed by the predefined predi-
cate malloc_block_Node_Type. The values of the fields are bound to existentially
quantified variables and used to build the model of the node. The predicate node

constrains the fields prev and nxt to be indexes in an array starting at index 0
and ending at index capacity.

There are two kinds of nodes in the array managed by the container: nodes
occupied by list elements and nodes not yet used in the list, i.e., free. Free nodes
have the prev field at −1 and the elem field is irrelevant. They are specified by the
predicate free_node (line 14 in Figure 1), which also constraints the parameter
inext to be equal with the value of the field next. Occupied nodes have the prev

field set to a non-negative integer and the elem field is relevant. The predicate
occupied_node (line 19 in Figure 1) relates the node with its abstract model.

Acyclic doubly linked list The container stores the doubly linked list (BDLL) into
an array of fixed capacity, which is given at the container creation. The number
of elements stored in the list can not exceed the container capacity. The nodes
of the BDLL are stored starting from the index 1; index 0 plays the role of the
null reference. The type of the list container is given by the following record:

struct List {

int capacity; struct Node_Type* nodes; int size;

int free; int first; int last;

};

The length of the list is given by the field size. The first and the last cells of the
lists are stored at indexes first resp. last. Field free denotes the start of the
list registering the free nodes. The operation creating the container allocates the
array nodes and sets at free all nodes in the array. The fields denoting the size
and the extreme cells of the doubly linked list are set to 0. The initialization of
the free field is detailed in the next paragraph.

The representation predicate of the BDLL formed by the occupied nodes,
bdll, is defined at line 22 in Figure 1 as a doubly linked list segment starting by
the node at index ifrom, ending by the node at index ilast; the starting node
stores as previous node iprev, and the ending node stores as next node ito.
The predicate definition is classic in Separation Logic [23], except the bound
constraint on the node indexes (locations). If the source ifrom and target ilast

indexes are equal, the list is empty; otherwise an occupied node is present at
index ifrom and it is linked to the previous node and the remained of the list.
Notice the use of pointer arithmetics to access the node at index ifrom. The
predicate bdll relates the heap specification with the mathematical model of the
list, i.e., the sequence of abstract nodes. We employ the polymorphic algebraic

7

prev next elem

-1 0 ?

prev next elem

0 2 e1

prev next elem

1 0 e2

prev next elem

-1 0 ?

prev next elem

-1 0 ?

0 1 == first 2 == last 3 == -free 4

prev next elem

-1 0 ?

prev next elem

0 3 e1

prev next elem

-1 4 ?

prev next elem

1 0 e2

prev next elem

-1 0 ?

0 1 == first 2 == free 3 == last 4

Fig. 2. Two doubly linked lists of capacity 4 and length 2

type list available in VeriFast mathematical library and we instantiate it with
the logic type pnode. This precise model of list content is mapped by the induc-
tively defined ghost function model to the abstract model, sequence of values of
Element_type stored.

Acyclic list of free nodes The free nodes are organized in a singly linked list,
called the free-list. The start of this list is given by the field free of the type
List. If free is negative, the list is built from all nodes stored between -free

and capacity included; this permits a fast initialization of the free-list at the
container creation. If free is positive, the free-list starts at index free, uses as
successor relation the next field, and ends at index 0. Figure 2 illustrates the two
kinds of free lists. The representation predicate uninit_free (line 31 in Figure 1)
is used when free is negative. It collects in the parameter model the sequence
of indexes of free nodes. For the second case, we define the predicate init_free

(line 38 in Figure 1). The two kinds of free-list are combined in the predicate
free_nodes (line 45 of Figure 1) that calls the correct predicate depending on
the sign of free. Notice that the constraints required by this predicates (the
relation between container capacity, BDLL and free-list sizes) are all present in
the Ada 2012 specification [11].

Representation predicate The invariants of the container are collected in the
predicate list_inv (line 52 in Figure 1) which mainly specifies that the container
is allocated in the heap (predefined malloc_block_List predicate), and its field
tab is also allocated as a block containing capacity+1 records of type Node_Type.
The first node of this array (at address tab) has its prev and next fields set to
-1 resp. 0. The set of remaining nodes is split between the lists specified by the
bdll and free_nodes predicates due to the separating conjunction. The size of
the BDLL is exactly the one of its model and stored in the field size.

Examples of container contracts We illustrate the usage of representation predi-
cates defined above by presenting some contracts specifying container operations.
For example, the contract of the constructor is:

struct List* List(int capacity);

//@ requires capacity > 0;

//@ ensures list_inv(result,?t,capacity,-1,_,0,0,?m) &*& length(model(m))=0;

8

It states that the resulting container (denoted by the ghost variable result) is
a well formed but empty bounded doubly linked list (its abstract model is the
empty list) with capacity free nodes. As said before, the above contract (like in
Ada 2012 specification), does not consider the case of memory shortage.

The contract of is_equal illustrates how the catamorphism model is used to
obtain the abstract contract on the sequence of values from the precise models
(given by variables mL and mR for each list parameter):

bool is_equal(struct List* L, struct List* R);

/*@ requires list_inv(L, ?tL, ?cL, ?fL, ?fmL, ?hL, ?lL, ?mL) &*&

list_inv(R, ?tR, ?cR, ?fR, ?fmR, ?hR, ?lR, ?mR); @*/

/*@ ensures list_inv(L, tL, cL, fL, fmL, hL, lL, mL) &*&

list_inv(R, tR, cR, fR, fmR, hR, lR, mR) &*&

result == (model(mL) == model(mR)); @*/

The operation clear frees all occupied nodes. Its contract only constrains the
content of the doubly linked list and leaves unspecified the free list.

void clear(struct List* L);

//@ requires list_inv(L,?t,?c,?f,?fm,?h,?l,?m);

//@ ensures list_inv(L,t,c,?f1,?fm1,0,0,?m1) &*& length(model(m1))=0;

2.3 Cursors

Following the Ada 2012 semantics [1], “a cursor designates a particular node
within a list (...). A cursor keeps designating the same node (...) as long as the
node is part of the container, even if the node is moved in the container. [...] If [a
cursor] is not otherwise initialized, it is initialized to [...] No_Element.” Therefore,
a cursor is a record storing an array index. The special cursor No_Element is
defined as a global constant storing the index 0, indeed invalid for a list node
(recall that valid nodes are stored from index 1).

struct Cursor { int current; };

const struct Cursor No_Element = { 0 };

The logic type cursor abstracts the cursor implementation (line 1 in Figure 3).
The representation predicate for cursors, valid_cursor_or_noelem (line 3 in Fig-
ure 3), checks that the cursor content, index, corresponds to an occupied node
in the list using the precise model m of the BDLL (see line 13). Moreover, the
predicate computes from m and first, the BDLL starting index, the segments
before and after, into which the cursor pc splits m.

Given a BDLL container, the model of valid cursors for this container is
defined (following Ada 2012 specification) as the finite bijection between the set
of abstract cursors and the positions (from 1 to the size) in the list. We encode
the mathematical type map by an association list, using the polymorphic type
provided in the libraries of VeriFast. The cursor model is computed by the logic
function positions (line 19 in Figure 3) from the container model, the index of
the first node in the BDLL, and the first position in the list.

9

1 inductive cursor = NoElem | Valid(int);
2

3 predicate valid_cursor_or_noelem(struct Cursor* C,
4 int index , int first , list <pnode > m;
5 cursor pc,
6 list <pnode > before , list <pnode > after) =
7 C->current|->index &*&
8 pre_valid_cursor_or_noelem(index ,first ,vs ,pc,before ,after);
9

10 predicate pre_valid_cursor_or_noelem(int index , int first , list <pnode > vs;
11 cursor pc, list <pnode > before , list <pnode > after) =
12 pc == (index == 0 ? NoElem : Valid(index)) &*&
13 index == first ?
14 (before == nil &*& after == vs) :
15 (vs != nil &*&
16 pre_valid_cursor_or_noelem(index ,pnext(head(vs)),tail(vs),pc ,?bef ,after) &*&
17 before == cons(head(vs),bef));
18

19 fixpoint list <pair <cursor , int > > positions (list <purenode > values ,
20 int index , int position) { ... }

Fig. 3. Logic definitions for cursors

Notice that this manner of specifying cursor model is coherent with the se-
quence model of the container, because the access to the elements of a sequence is
based on positions. However, this specification choice does not combine well with
inductive reasoning and induces additional work for the proof (see Section 3).
We have to enrich the inductive list model with operations using positions. For
example, we define the operation M_Element(m,p) which returns the pth element
of the list m. We also defined operations P_Has_Key and P_Get on association lists
to test if an abstract cursor is in the domain of the map resp. to obtain the value
to which it is bound.

An example of contract using cursors is the operation element, which returns
the value stored at the position in the list given by the cursor C:

Element_Type element(struct List* L, struct Cursor* C)

/*@ requires list_inv(L,?tab,?capacity,?free,?fm,?head,?last,?m) &*&

valid_cursor_or_noelem(C,?index,head,m,?pc,?bef,?aft) &*&

P_Has_Key(positions(m,head,1),pc)==true; @*/

/*@ ensures list_inv(L,tab,capacity,free,fm,head,last,m) &*&

valid_cursor_or_noelem(C,index,head,m,pc,bef,aft) &*&

result==M_Element(model(m),P_Get(positions(m,head,1),pc)); @*/

Contracts of functions changing the positions in the list (e.g., insert or delete)
are complete with respect to the model of cursors. For example, consider the post-
condition of operation delete_first, which deletes first Count elements of the list.
It uses a conditional expression (syntax like in C) to specify two contract cases.
The first case corresponds to an input container with size less than Count. In the
second case, the container preserved its content after position Count (predicate
M_Range_Shifted) and the positions of valid cursors in the new container (of
model nvs) are shifted by Count (predicate P_Positions_Shifted) with respect to
the old container.

10

void delete_first(struct List* L, int Count);

/*@ requires list_inv(L,?tab,?cap,?free,?fm,?head,?last,?m) &*&

Count >= 0; @*/

/*@ ensures list_inv(L,tab,cap,?nfree,?nfm,?nhead,?nlast,?nm) &*&

length(m) <= Count ? length(nm) == 0

: length(nm) == length(m) - Count &*&

M_Range_Shifted(model(nm),model(m),1,length(nm),Count) &*&

P_Positions_Shifted(positions(nm,nhead,1),

positions(m,head,1),1,Count); @*/

3 Verification Approach

We employ an auto-active verification approach [19], supported by the tool Veri-
Fast [14]. The auto-active approach provides more automation of the verification
process based on the ability given to the user to help the prover by adding an-
notations and lemmas and the efficient use of back-end solvers. This section
highlights the methodology applied to conduct auto-active verification for this
case study. This methodology is independent of the specific tool used. We also
comment on the advantages and difficulties encountered with the tool used. No-
tice that we do not have prior experience with VeriFast.

3.1 Model-based Specification for Verification

The contracts provided for our container are in a first order logic over sequences
and maps, which employs recursive logic functions. This theory is undecidable
so we have to provide lemma to help the prover to tackle verification conditions.

Usage of a precise model is the solution we found to ease the writing of lemmas.
It consists in refining the abstract model used for the container specification
into a model that captures more details on the container organization. The
abstract model is obtained from the refined one using a catamorphic mapping.
This methodology is required by the gap between the abstract model and the
lower level implementation of the container.

Let us explain why this methodology leads to efficient verification in our case.
Consider the specification where (i) the model for the container is the sequence
of the value stored and (ii) the model for the cursors is the mapping of occupied
nodes to list positions. To capture these models with the representation predicate
for the heap, i.e., the predicate bdll defined at line 22 in Figure 1, we have to
replace the model m by the sequence of values vs and the map of cursors mc. The
verification of iterative operations on the list requires to provide a lemma that
allows to compose “well linked” list segments into a new list segment, i.e.,

lemma void bdll_concat(struct Node_Type * t,

int p, int f, int l1 , int n1 , int l, int n)

requires bdll(t,?c,p,f,l1,n1 ,?vs1 ,?mc1) &*&

bdll(t,c,l1,n1,l,n,?vs2 ,?mc2) &*& node(t+n, c, ?pn);

11

ensures bdll(t,c,p,f,l,n,append(vs1 ,vs2),

append_maps(mc1 ,mc2)) &*& node(t+n, c, pn);

{ ... }

This lemma employs an operation append_maps, that concatenates two models
of counters mc1 and mc2 such that the positions associated with counters in mc1

are shifted by the size of the domaine of mc1. This operation is more difficult
to axiomatize that list concatenation. Moreover, all invariant proofs require to
keep together the two loosely related models (sequence and map) which leads to
less modular proofs. Our solution to this problem is to employ the precise model
of the list segment represented by the bdll predicate, as has been presented
in Section 2.2. The composition lemma for bdll predicate is simpler because it
avoids the reasoning on the model of cursors.

The catamorphism mappings used to obtain the abstract model of the con-
tainer and the model of valid cursors have good inductive definitions and enable
efficient decision procedures [34]. However, these decision procedures are not
available in our verification tool; this work may be a motivation to add them.

Specification of user types by representation predicates mapping them to induc-
tive types is classical in Separation Logic. We encode the invariant of the BDLL
data structure in the predicate list_inv. The adoption of C for the implementa-
tion keeps us away from the problems of verifying object-related properties, for
example. However, this choice leads to an overburden in annotations because we
have to specify that parameters of type ’struct List*’ satisfy the invariant.

Additional annotation have been supplied to axiomatize global constants
(like the No_Element record in Figure 1) and arrays of user-defined structures
(like nodes in List).

Contract cases are intensively used in the considered GNAT library. We got
around the absence of contract cases in VeriFast using conditional expressions
and logic predicate and functions that relate two models (old and new). We
do not observe any expressivity or performance problems with this method of
encoding contracts.

3.2 Support for Specification Types

Specification of model types is done based on the mathematical models sequence
(or inductive polymorphic list) and map (or inductive polymorphic association
list). The VeriFast libraries including these models (mainly list.*) contain 9
predicates and 20 lemmas, and are not enough for the operations on models
required in our specifications. We added tens of lemma and predicates. They
are useful not only for the container proof but also for the verification of client
program with inductive back-end solvers. (Nowadays, these proofs are done by
GNATprove by calling SMT solvers with quantifiers support.)

More problematic was the lack of support for finite maps and automation of
inductive reasoning. VeriFast does not provide sets and finite maps as primitives.

12

The encoding of cursors model by association lists renders lemmas needed on
cursor models more complex. For example, map inclusion is defined as follows:

1 predicate P_le <t>(list <pair <t,int > > Left , list <pair <t,int > > Right) =
2 switch(Left) {
3 case nil: return true;
4 case cons(p, m):
5 return P_Has_Key(Right , fst(p)) == true &*&
6 snd(p) == P_Get(Right , fst(p)) &*&
7 P_le(m, Right);
8 };

This definition is not as easy to reason about as we might expect. In partic-
ular, some properties of this definition of inclusion such as reflexivity are only
provable under the additional assumption that the keys are distinct.

We proved that the models of cursors fulfill the constraint distinct_keys (de-
fined also in VeriFast libraries) because keys are index positions in the array used
to denote separated cells.

1 lemma void positions_distinct_keys(int index , list <purenode > m, int pos)
2 requires bdll(?tab , ?cap , ?fst , index , ?last , ?z, m) &*& node(tab+z, cap , ?tab0);
3 ensures bdll(tab , cap , fst , index , last , z, m) &*& node(tab+z, cap , tab0) &*&
4 distinct_keys(positions(m, index , pos)) == true;

Notice that these proofs are not necessary for provers with support for finite
maps and sets. Although VeriFast supports as back-end solver Z3 [8], it does not
use it for such theories. The inductive theories are supported by other back-end
solvers, e.g., CVC4 [29] that are not connected to VeriFast.

3.3 Annotations Load

We include all the required (contracts) and auxiliary annotations (loop invari-
ants, open/close of predicates, definitions and calls of lemma) in the source of
the container proved by the solver. The prover (VeriFast with redux solver) in-
cludes all this annotation burden, since we can not direct the prover in the usage
of these annotations. VeriFast provides two mechanisms to limit the burden of
required annotations: (i) lemmas can be marked as automated which means they
will be given to the backend solver on all problems, (ii) inductive predicate def-
initions can be automatically folded and unfolded when used with computed
parameters.

We introduce few automated lemma and the introduced lemma are called in
annotation to lighten the prover load. We don’t observe performance problems
by including all these annotations and despite the absence of modular proofs.
The frame reasoning rule of Separation Logic seems to play an important role
in this good behavior.

We found useful the two ways of specifying inductive predicates in VeriFast:
by case on the model or by case over the aliasing of heap locations. We started
with the first style, but finally chose the second to bring advantages of automatic
folding and unfolding of computed predicates.

3.4 Challenges dealt

To resume, we faced the following challenges during the verification process:

13

– We considered a functional specification which is already in use in client
code. Therefore, we can not adapt this specification to ease the verification.
Instead, we propose a method based on a refined specification based on a
precise model of the container that eases the verification and allows to obtain
the initial specification with minimal cost.

– The specification we received is complete with respect to the model of con-
tainers and cursors. This requires to specify logic functions and predicate
that are more complex than the usual ones.

– The code has been designed to obtain efficient container implementation and
does not focus on verification. Therefore, the verification task has been more
difficult compared with previous work verifying functional specification of
container libraries [27,38] designed with verification in mind.

– Only specifications of contracts for public operations on the container were
provided. We had to annotate the code and the internal operations. This
implied an additional cost in annotations because some internal operations
break the data structure invariants.

– Having in mind the extension of this verification effort to other bounded
container libraries (for sets or maps), we propose reusable logic libraries and
suggest some improvements for the auto-active verification tool in use.

4 Verification Results

Bugs found We don’t find spectacular bugs in code, which is normal for a library
that has been used for years. We only detect a potential arithmetic overflow in
the computation of the memory to be allocated and a potential memory shortage.
The last problem is in fact dealt for the SPARK clients using tools that measure
the memory allocated by the program.

Complete specifications We also fix some minor completeness problems with
the original specifications. Our verification effort leads to a complete functional
specifications for all operations, including non public operations.

Table 1. Statistics on the proof
File #pred #fix- #lemma lines

points annot code

vflist.gh 2 8 9 234 –

vfseq.gh 14 10 34 486 –

vfmap.gh 12 9 57 1133 –

cfdlli.h 4 10 0 321 37

cfdlli.c 14 5 65 2328 396

Total 46 42 165 4502 433

Specification load We have coded,
specified, and verified 27 functions
out of the 39 provided by the
container library including equal-
ity and emptiness tests, clear, as-
sign and copy, getting and set-
ting one element, manipulating
the cursors, inserting and deleting
at some cursor, finding an element
before and after a cursor. Most of
the 12 remaining functions deal with sorting. The size of our development is
given in Table 1. To obtain a specification close to the Ada 2012 one, we wrote
two files of logic definitions for models (vfseq.gh and vfmap.gh) extending the

14

VeriFast libraries. Additional fixpoint functions and lemmas required on VeriFast
lists are written in file vflist.gh. The rate between source code and annota-
tions is about 1 for 8. The required annotations (i.e., data structure invariant,
pre/post conditions, and logic predicate and function used directly in them) rep-
resent a quarter of all annotations (including also loop invariants and lemmas).
In Ada 2012 container, the rate between source code and contracts is already of
about 1 for 3.

Verification performance We run VeriFast on a machine with 16GB RAM, Intel
core i5, and 2.70 GHz, installed with Linux. The back-end solver of VeriFast was
redux. The verification takes 1.3 seconds for the full container.

5 Related Work

The verification of individual data structure has received special attention. Gen-
eral safety properties (i.e., absence of out of array bounds accesses, null derefer-
ences, division by zero, arithmetic overflow) may be verified automatically with
low load of annotations using static analysis methods, e.g. [12,18,20,16]. More
complex properties like reachability of locations in the heap and shape of the
data structures could also be proved with static analysis methods based on shape
analysis, e.g., [31,5,4,9]. These automatic techniques have been applied to linked
lists coded in arrays [33]. These methods concern limited properties and may
be used in the early stages of the library development to infer internal invariant
properties. Extension of fully automatic techniques to cover functional specifica-
tion abstractions like sets or bags are based either on shape analysis, e.g., [6,13]
or on logic fragments supported by SMT decision procedures [17,15,36,37]. These
functional specifications capture essential mathematical properties of the data
structure but do not deal with properties of iterators over them.

At the opposite on the spectrum of verification techniques, interactive provers
have been used to obtain detailed specifications about data structures based on
powerful theories, e.g., [7,22,28], but they require expertise and great amount of
proof scripting.

At the intermediate level of automation, functional verification tools have
been used to tackle the verification of specific data structures (e.g., Dafny [32],
GRASShoper [25], VeriFast [14], or Why3 [35]) but we are not aware of any
experiment on bounded lists.

The full functional correctness of container libraries has been considered
in [38,27]. They consider complex data structures in imperative and object ori-
ented languages that require to verify special properties and may benefit from
modular verification thanks to inheritance. In both cited works, a special effort
has been deployed to improve the prover to call solvers for different theories
or to generate verification conditions that may be dealt efficiently. This efforts
lead to a low annotation overhead, especially in [27]. We use an on-the-shelf
auto-active verification tool but improve its performances by employing a refine-
ment method which leads to more automation but a more important annotation
overhead. None of these works consider the container of bounded list.

15

6 Conclusion

We apply auto-active verification provided by the VeriFast tool to prove the
functional specifications of the bounded doubly linked list container. The im-
plementation we consider is in C, but it mimics the GNAT library [11], which
is used in SPARK client programs. The functional specification is model-based
and uses sequence and map mathematical models in a specific way to model
the content of the list and its valid cursors. Our main contributions are (i) the
improvement of the logic libraries of VeriFast to deal with such specific models
and (ii) the use of a refinement based methodology to ease the proof automation.

This case study provides a motivation for the development of inductive solvers
and their connection with auto-active provers like VeriFast. This experiment
is another demonstration of the known fact (see [27]) that proving functional
specifications of real world containers is more difficult than proving functional
specification of data structures. The support for automation of these proofs is
of an utmost importance to scale the verification to a full library of containers.

Acknowledgements: We thank Claire Dross and Yannick Moy from AdaCore for
guiding us through the Ada standard library and for supplying the last version
of its specification. We thank Samantha Dihn for the first C version of the Ada
containers.

References

1. Ada Europe. Ada Reference Manual - Language and Standard Libraries, Chapter
A.18.3 The Generic Package Containers.Doubly_Linked_Lists Norm ISO/IEC
8652:2012(E), 2012. Available online at http://www.adaic.org/resources/add_

content/standards/12rm/html/RM-TTL.html.
2. AdaCore. SPARK verification gallery. Available at https://github.com/AdaCore/

spark2014/tree/master/testsuite/gnatprove/tests.
3. P. Baudin, J. C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and V. Pre-

vosto. ACSL: ANSI C Specification Language (preliminary design V1.2), prelimi-
nary edition, May 2008.

4. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional shape
analysis by means of bi-abduction. J. ACM, 58(6):26:1–26:66, Dec. 2011.

5. B. E. Chang and X. Rival. Relational inductive shape analysis. In Proceedings of
POPL, pages 247–260. ACM, 2008.

6. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Science of
Computer Programming, 77(9):1006 – 1036, 2012. The Programming Languages
track at the 24th ACM Symposium on Applied Computing (SAC’09).

7. A. Chlipala, J. G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Effective
interactive proofs for higher-order imperative programs. In Proceeding of ICFP,
pages 79–90. ACM, 2009.

8. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan
and J. Rehof, editors, Proceedigns of TACAS, volume 4963 of LNCS, pages 337–
340. Springer, 2008.

http://www.adaic.org/resources/add_content/standards/12rm/html/RM-TTL.html
http://www.adaic.org/resources/add_content/standards/12rm/html/RM-TTL.html
https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests
https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests

16

9. C. Dragoi, C. Enea, and M. Sighireanu. Local shape analysis for overlaid data
structures. In Proceedings of SAS, volume 7935 of LNCS, pages 150–171. Springer,
2013.

10. C. Dross, J. Filliâtre, and Y. Moy. Correct code containing containers. In Proceed-
ings of TAP, volume 6706 of LNCS, pages 102–118. Springer, 2011.

11. GNU Fundation. GNAT library components in gcc 7.1. Available
at https://sourceware.org/svn/gcc/tags/gcc_7_1_0_release/gcc/ada/ files
a-cfdlli.ad*.

12. N. Halbwachs and M. Péron. Discovering properties about arrays in simple pro-
grams. In Proceedings of PLDI, pages 339–348. ACM, 2008.

13. S. Itzhaky, N. Bjørner, T. Reps, M. Sagiv, and A. Thakur. Property-Directed Shape
Analysis, pages 35–51. Springer, Cham, 2014.

14. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In Proceedings of APLAS, volume 6461 of LNCS, pages 304–311. Springer, 2010.

15. S. Jacobs and V. Kuncak. Towards Complete Reasoning about Axiomatic Specifi-
cations, pages 278–293. Springer, Berlin, Heidelberg, 2011.

16. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C:
A software analysis perspective. FAC, 27(3):573–609, 2015.

17. V. Kuncak, R. Piskac, P. Suter, and T. Wies. Building a Calculus of Data Struc-
tures, pages 26–44. Springer, Berlin, Heidelberg, 2010.

18. V. Laviron and F. Logozzo. Subpolyhedra: a family of numerical abstract domains
for the (more) scalable inference of linear inequalities. STTT, 13(6):585–601, Nov
2011.

19. K. R. M. Leino and M. Moskal. Usable auto-active verification. Available at
fm.csl.sri.com, 2010.

20. J. Liu and X. Rival. Abstraction of arrays based on non contiguous partitions. In
Proceedings of VMCAI, volume 8931 of LNCS, pages 282–299. Springer, 2015.

21. J. W. McCormick and P. C. Chapin. Building High Integrity Applications with
SPARK. Cambridge University Press, 2015.

22. A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: de-
pendent types for imperative programs. In Proceeding of ICFP, pages 229–240.
ACM, 2008.

23. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of CSL, volume 2142 of LNCS, pages
1–19. Springer, 2001.

24. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In Proceedings of POPL, pages 268–280. ACM, 2004.

25. R. Piskac, T. Wies, and D. Zufferey. Automating Separation Logic with Trees and
Data, pages 711–728. Springer, Cham, 2014.

26. N. Polikarpova, C. A. Furia, and B. Meyer. Specifying reusable components. In
Proceedings of VSTTE, LNCS, pages 127–141, Berlin, Heidelberg, 2010. Springer.

27. N. Polikarpova, J. Tschannen, and C. A. Furia. A fully verified container library.
In Proceedings of FM, volume 9109 of LNCS, pages 414–434. Springer, 2015.

28. F. Pottier. Verifying a hash table and its iterators in higher-order separation logic.
In Proceedings of CPP, pages 3–16. ACM, 2017.

29. A. Reynolds and V. Kuncak. Induction for SMT solvers. In D. D’Souza, A. Lal,
and K. G. Larsen, editors, Proceedings of VMCAI, volume 8931 of LNCS, pages
80–98. Springer, 2015.

30. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of LICS, pages 55–74. IEEE, 2002.

https://sourceware.org/svn/gcc/tags/gcc_7_1_0_release/gcc/ada/
fm.csl.sri.com

17

31. N. Rinetzky, S. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In Proceedings of SAS, volume 3672 of LNCS, pages 284–302.
Springer, 2005.

32. K. Rustan and M. Leino. Main microsoft research dafny web page. Available at
http://research.microsoft.com/en-us/projects/dafny.

33. P. Sotin and X. Rival. Hierarchical shape abstraction of dynamic structures in
static blocks. In Proceedings of APLAS, volume 7705 of LNCS, pages 131–147.
Springer, 2012.

34. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. In Proceedings of POPL, pages 199–210. ACM, 2010.

35. Why3-Team. Why3 verification gallery. Available at http://toccata.lri.fr/

gallery/.
36. T. Wies, M. Muñiz, and V. Kuncak. An Efficient Decision Procedure for Imperative

Tree Data Structures, pages 476–491. Springer, Berlin, Heidelberg, 2011.
37. T. Wies, M. Muñiz, and V. Kuncak. Deciding Functional Lists with Sublist Sets,

pages 66–81. Springer, Berlin, Heidelberg, 2012.
38. K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of linked data

structures. In Proceedings of PLDI, pages 349–361. ACM, 2008.

http://research.microsoft.com/en-us/projects/dafny
http://toccata.lri.fr/gallery/
http://toccata.lri.fr/gallery/

	A Verified Implementation of the Bounded List Container

