
Tools for low level programs

Deliverable D4-3

ANR project VECOLIB

first version September 2016,
last update August 2017

Abstract

This report gives a synopsis of the set of tools developed during
the Vecolib project for the verification of low level programs. This
set includes solvers for Separation Logic, a model checker, and abstract
domains used in static analysers. The report compares these tools with
similar tools developed outside this project.

1 Decision Procedures

For the verification of low level programs, we implemented several decision
procedures for (fragments of) Separation Logic. These procedures and the
three tools implementing them have been presented in details in the deliv-
erable D1-1. In this part of the report, we only outline the improvements
done to these tools during the last years of the project, from October 2015
to August 2017.

Spen [14, 8] has been updated to identify a particular case of inductive
definitions for which the general procedure is complete and has polynomial
time complexity. This particular case includes interesting inductive defini-
tions like skip lists and acyclic doubly linked lists. The updated procedure
has been published in [7].

The front-ends of Slide [13] and CVC4SepLog [6] have been updated
to read problems written in the new SMT-LIB format [1] for SL [].

The algorithm of CVC4SepLog has been improved and published
in [12].

1



2 Model-checkers

In the Vecolib proposal, we aim to develop a model-checking tool based on
symbolic trace exploration using the encoding of heaps in Separation Logic,
interpolation, and bi-abduction. This project has been reconsidered for the
reasons detailed in the deliverable D1.3, mainly the lack of maturity of the
existing solvers. Due to this reason, in the rest of the Vecolib project, we
envisage experimenting with interpolation in high-level logics, by adapting
our alternating data automata (ADA) emptiness checker (reported in deliv-
erable D4.5) to work with strings and algebraic data types, in addition to
linear arithmetic.

Although concerned only with the model-checking of formulas (and not
programs specified) in SL, we mention the work of Brotherston et al [3]
published in 2016. It defines a model-checking algorithm for the fragment
of SL used in static analysers, i.e., the symbolic heaps fragment. This result
may be interesting for the development of testing techniques.

3 Static Analysers

Frama-C [10] includes a new static analysis architecture, called Eva [4],
that eases the development of new analyses by providing a clean interface
for connecting new abstract domains. Using the existing memory model of
Frama-C (see deliverable D2.1), several abstract domains have been con-
nected and experimented on existing case studies of programs manipulating
pointers. The results are more precise (some false alarms are removes) with-
out much loss of time performance for the analysis. The precise experimental
results are given in [4].

For the analysis of programs using pointers and pointer arithmetics,
the new abstract domain of garbled-mix intervals has been developed and
integrated at Frama-C (both Value and Eva plugins), as described in
deliverable D2.1.

Celia [2] is a plugin of Frama-C which assumes a memory model based
on a set of disjoints records. It has been used, before the Vecolib During
the project, we developed a new abstract domain, defined in [9], that assumes
a hierarchical memory model in order to be able to analyse low level code
used by dynamic memory allocators (DMA). This model is composed of two
levels: a level where the memory is a sequence of bytes organised in a heap
list, and a level where the model is the set of records. As described in [9]

2



and resumed in D2.1, we were able to analyse several implementations of
DMA. Compared with other analysers, e.g., [5, 11], our abstract domain
has more expressive power and therefore is able to deal more precisely with
a larger set of DMA. This expressive power is balanced by a loss in time
performance. We are currently working on improving our implementation
in order to obtain better execution times.

References

[1] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theo-
ries Library (SMT-LIB). www.SMT-LIB.org, 2010.

[2] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. On inter-
procedural analysis of programs with lists and data. In PLDI, pages
578–589. ACM, 2011.

[3] J. Brotherston, N. Gorogiannis, M. I. Kanovich, and R. Rowe. Model
checking for symbolic-heap separation logic with inductive predicates.
In Proceedings of POPL, pages 84–96. ACM, 2016.

[4] D. Bühler. Structuring an Abstract Interpreter through Value and State
Abstractions: EVA an Evolved Value Analysis for Frama-C. PhD thesis,
University of Rennes, 2017.

[5] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond
reachability: Shape abstraction in the presence of pointer arithmetic.
In SAS, volume 4134 of LNCS, pages 182–203. Springer, 2006.

[6] CVC4SepLog. https://github.com/timothy-king/CVC4SepLogic.

[7] C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional
entailment checking for a fragmentof separation logic. Form Methods
Syst Des, 2017.

[8] C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. SPEN: A solver
for separation logic. In Proceedings of NFM, volume 10227 of Lecture
Notes in Computer Science, pages 302–309, 2017.

[9] B. Fang and M. Sighireanu. Hierarchical shape abstraction for analysis
of free-list memory allocators. In LOPSTR, volume 10184 of Lecture
Notes in Computer Science. Springer, 2016.

3

https://github.com/timothy-king/CVC4SepLogic


[10] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-C: A software analysis perspective. Formal Asp. Comput.,
27(3):573–609, 2015.

[11] J. Liu and X. Rival. Abstraction of arrays based on non contiguous
partitions. In VMCAI, volume 8931 of LNCS, pages 282–299. Springer,
2015.

[12] A. Reynolds, R. Iosif, C. Serban, and T. King. A Decision Procedure
for Separation Logic in SMT, pages 244–261. Springer International
Publishing, Cham, 2016.

[13] SLIDE. http://www.fit.vutbr.cz/research/groups/verifit/

tools/slide/.

[14] SPEN. https://www.github.com/mihasighi/spen.

4

http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/
http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/
https://www.github.com/mihasighi/spen

	Decision Procedures
	Model-checkers
	Static Analysers

