
Decision Procedures for Containers

Deliverable D1-2

ANR project VECOLIB

November 2015

Abstract

This deliverable presents the decision procedures developed inside the Vecolib project
for reasoning about implementation and content of containers.

Verification of programs implementing containers requires reasoning about complex, un-
bounded size data structures that may carry data ranging over infinite domains. Examples
of such structures are multi-linked lists, nested lists, trees, etc, see deliverable 4.1 of Vecolib.
These implementations perform operations that may modify the shape (due to dynamic cre-
ation and destructive updates) as well as the data attached to the elements of such data
structures. An important issue is the design of logic-based frameworks that express assertions
about program configurations, and then allows to check automatically the validity of these
assertions, for all computations. This leads to the challenging problem of finding relevant
compromises between expressiveness, automation, and scalability. The frameworks and tools
developed in the Vecolib project provide solutions to this problem.

Decision procedures for Separation Logic with integer constraints

The first solution, published in [2], is based on Separation Logic (SL). Separation Logic with
inductive definitions (SLID) is a well-known approach for deductive verification of programs
that manipulate dynamic data structures. Deciding verification conditions in this context is
usually based on user-provided lemmas relating the inductive definitions (ID). We propose a
novel approach for generating these lemmas automatically which is based on simple syntactic
criteria and deterministic strategies for applying them. Our approach focuses on iterative
programs, although it can be applied to recursive programs as well, and specifications that
describe not only the shape of the data structures, but also their content or their size.

This approach is based on a new class of inductive definitions for describing fragments
of data structures that (i) supports very simple lemmas, most of them being extensions of
the case where data constraints are not present in the inductive definition, and (ii) allows to
automatically synthesise these lemmas using efficiently checkable, almost syntactic, criteria.

In addition to this form of ID, we propose a proof strategy using such lemmas, based on
simple syntactic matchings of SL atoms and reductions to SMT solvers for dealing with the
data constraints.

We implemented this approach in the Spen [3] solver and tested it on two sets of bench-
marks:

1



• RDBI: 110 verification conditions for proving the correctness of iterative procedures
(delete, insert, search) over recursive data structures storing integer data: sorted lists,
binary search trees (BST), AVL trees, and red black trees (RBT).

• SL-COMP’14: 30 problems in the SL-COMP’14 benchmark, without data constraints,
where the inductive definitions are in the class we proposed.

Each problem is solved in less than 1 second, including the call to the SMT solver on the data
constraints (described in the next part).

Decision procedure for bag and set constraints

The second decision procedure developed concerns the theory of quantifier free constraints on
bags (multi-sets) and sets over integers (QFBILIA). This theory is used not only in the context
of the above work on Separation Logic, but it is also the basis of some verifications tools (e.g.,
Why3, B method). A decision procedure for this theory has been published in [5]. However,
there is no SMTLIB theory for this logic and the available SMT solvers (e.g., Z3 [1]) does
not deal with such constraints. We submitted this subject to an internship student, Etienne
Toussaint, during the summer 2015. He implemented a solver, called BATS, for this theory,
with two algorithms. The first algorithm reduces the QFBILIA satisfiability problem to a
satisfiability problem in the theory of QFLIA (quantifier free linear integer arithmetics), which
is dealt by the current SMT solvers. The second algorithm does a reduction to the QFUFLIA
theory, i.e., QFLIA with non-interpreted function symbols, which is also efficiently dealt by
SMT solvers. Moreover, these two procedures are optimised to generate small formulas ans
so improve the efficiency of SMT solvers.

This solver if formally described in Etienne Toussaint’s internship report [4] and the im-
plementation is also available on [3]. BATS has been used in the Spen solver to decide the
validity of verification conditions in Separation Logic with data constraints.

References

[1] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems, LNCS, pages 337–340. Springer, 2008.

[2] C. Enea, M. Sighireanu, and Z. Wu. On automated lemma generation for separation logic
with inductive definitions. In ATVA, volume 9364 of LNCS, pages 80–96. Springer, 2015.
Available as Appendix A.

[3] SPEN. https://www.github.com/mihasighi/spen.

[4] E. Toussaint. Deciding set and multi-set constraints. Internship report, University Paris
Diderot, September 2015. Available as Appendix B.

[5] C. G. Zarba. Combining multisets with integers. In CADE, LNCS, pages 363–376.
Springer, 2002.

2

https://www.github.com/mihasighi/spen

